Spaces:
Sleeping
Sleeping
Create results_page.py
Browse files- results_page.py +362 -0
results_page.py
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Results stage for the Loci Similes GUI."""
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import csv
|
| 6 |
+
import io
|
| 7 |
+
import re
|
| 8 |
+
from typing import TYPE_CHECKING
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
import gradio as gr
|
| 12 |
+
except ImportError as exc:
|
| 13 |
+
missing = getattr(exc, "name", None)
|
| 14 |
+
base_msg = (
|
| 15 |
+
"Optional GUI dependencies are missing. Install them via "
|
| 16 |
+
"'pip install locisimiles[gui]' (Python 3.13+ also requires the "
|
| 17 |
+
"audioop-lts backport) to use the Gradio interface."
|
| 18 |
+
)
|
| 19 |
+
if missing and missing != "gradio":
|
| 20 |
+
raise ImportError(f"{base_msg} (missing package: {missing})") from exc
|
| 21 |
+
raise ImportError(base_msg) from exc
|
| 22 |
+
|
| 23 |
+
if TYPE_CHECKING:
|
| 24 |
+
from locisimiles.document import Document, TextSegment
|
| 25 |
+
|
| 26 |
+
import tempfile
|
| 27 |
+
from typing import Any, Dict, List, Tuple
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
import gradio as gr
|
| 31 |
+
except ImportError as exc:
|
| 32 |
+
raise ImportError("Gradio is required for results page") from exc
|
| 33 |
+
|
| 34 |
+
from locisimiles.document import Document, TextSegment
|
| 35 |
+
|
| 36 |
+
# Type aliases from pipeline
|
| 37 |
+
FullDict = Dict[str, List[Tuple[TextSegment, float, float]]]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def update_results_display(results: FullDict | None, query_doc: Document | None, threshold: float = 0.5) -> tuple[dict, dict, dict]:
|
| 41 |
+
"""Update the results display with new data.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
results: Pipeline results
|
| 45 |
+
query_doc: Query document
|
| 46 |
+
threshold: Classification probability threshold for counting finds
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
Tuple of (query_segments_update, query_segments_state, matches_dict_state)
|
| 50 |
+
"""
|
| 51 |
+
query_segments, matches_dict = _convert_results_to_display(results, query_doc, threshold)
|
| 52 |
+
|
| 53 |
+
return (
|
| 54 |
+
gr.update(value=query_segments), # Update query segments dataframe
|
| 55 |
+
query_segments, # Update query segments state
|
| 56 |
+
matches_dict, # Update matches dict state
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def _format_metric_with_bar(value: float, is_above_threshold: bool = False) -> str:
|
| 61 |
+
"""Format a metric value with a visual progress bar.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
value: Metric value between 0 and 1
|
| 65 |
+
is_above_threshold: Whether to highlight this value
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
HTML string with progress bar
|
| 69 |
+
"""
|
| 70 |
+
percentage = int(value * 100)
|
| 71 |
+
|
| 72 |
+
# Choose color based on threshold
|
| 73 |
+
if is_above_threshold:
|
| 74 |
+
bar_color = "#6B9BD1" # Blue accent for findings
|
| 75 |
+
bg_color = "#E3F2FD" # Light blue background
|
| 76 |
+
else:
|
| 77 |
+
bar_color = "#B0B0B0" # Gray for below threshold
|
| 78 |
+
bg_color = "#F5F5F5" # Light gray background
|
| 79 |
+
|
| 80 |
+
html = f'''
|
| 81 |
+
<div style="display: flex; align-items: center; gap: 8px; width: 100%;">
|
| 82 |
+
<div style="flex: 1; background-color: {bg_color}; border-radius: 4px; overflow: hidden; height: 20px; position: relative;">
|
| 83 |
+
<div style="background-color: {bar_color}; width: {percentage}%; height: 100%; transition: width 0.3s;"></div>
|
| 84 |
+
</div>
|
| 85 |
+
<span style="min-width: 45px; text-align: right; font-weight: {'bold' if is_above_threshold else 'normal'};">{value:.3f}</span>
|
| 86 |
+
</div>
|
| 87 |
+
'''
|
| 88 |
+
return html
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def _convert_results_to_display(results: FullDict | None, query_doc: Document | None, threshold: float = 0.5) -> tuple[list[list], dict]:
|
| 92 |
+
"""Convert pipeline results to display format.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
results: Pipeline results (FullDict format)
|
| 96 |
+
query_doc: Query document
|
| 97 |
+
threshold: Classification probability threshold for counting finds
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
Tuple of (query_segments_list, matches_dict)
|
| 101 |
+
"""
|
| 102 |
+
if results is None or query_doc is None:
|
| 103 |
+
# Return empty data if no results
|
| 104 |
+
return [], {}
|
| 105 |
+
|
| 106 |
+
# First pass: Create raw matches dictionary and count finds
|
| 107 |
+
raw_matches = {}
|
| 108 |
+
find_counts = {}
|
| 109 |
+
|
| 110 |
+
for query_id, match_list in results.items():
|
| 111 |
+
# Sort by probability (descending) to show most likely matches first
|
| 112 |
+
sorted_matches = sorted(match_list, key=lambda x: x[2], reverse=True) # x[2] is probability
|
| 113 |
+
|
| 114 |
+
# Store raw numeric values
|
| 115 |
+
raw_matches[query_id] = sorted_matches
|
| 116 |
+
|
| 117 |
+
# Count finds above threshold
|
| 118 |
+
find_counts[query_id] = sum(1 for _, _, prob in sorted_matches if prob >= threshold)
|
| 119 |
+
|
| 120 |
+
# Convert query document to list format with find counts
|
| 121 |
+
# Document is iterable and returns TextSegments in order
|
| 122 |
+
query_segments = []
|
| 123 |
+
for segment in query_doc:
|
| 124 |
+
find_count = find_counts.get(segment.id, 0)
|
| 125 |
+
query_segments.append([segment.id, segment.text, find_count])
|
| 126 |
+
|
| 127 |
+
# Second pass: Format matches with HTML progress bars
|
| 128 |
+
matches_dict = {}
|
| 129 |
+
for query_id, match_list in raw_matches.items():
|
| 130 |
+
matches_dict[query_id] = [
|
| 131 |
+
[
|
| 132 |
+
source_seg.id,
|
| 133 |
+
source_seg.text,
|
| 134 |
+
_format_metric_with_bar(round(similarity, 3), probability >= threshold),
|
| 135 |
+
_format_metric_with_bar(round(probability, 3), probability >= threshold)
|
| 136 |
+
]
|
| 137 |
+
for source_seg, similarity, probability in match_list
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
+
return query_segments, matches_dict
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def _on_query_select(evt: gr.SelectData, query_segments: list, matches_dict: dict) -> tuple[dict, dict]:
|
| 144 |
+
"""Handle query segment selection and return matching source segments.
|
| 145 |
+
|
| 146 |
+
Note: evt.index[0] gives the row number when clicking anywhere in that row.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
evt: Selection event data
|
| 150 |
+
query_segments: List of query segments
|
| 151 |
+
matches_dict: Dictionary mapping query IDs to matches
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
A tuple of (prompt_visibility_update, dataframe_update_with_data)
|
| 155 |
+
"""
|
| 156 |
+
if evt.index is None or len(evt.index) < 1:
|
| 157 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 158 |
+
|
| 159 |
+
row_index = evt.index[0]
|
| 160 |
+
if row_index >= len(query_segments):
|
| 161 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 162 |
+
|
| 163 |
+
segment_id = query_segments[row_index][0]
|
| 164 |
+
matches = matches_dict.get(segment_id, [])
|
| 165 |
+
|
| 166 |
+
# Hide prompt, show dataframe with results
|
| 167 |
+
return gr.update(visible=False), gr.update(value=matches, visible=True)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def _extract_numeric_from_html(html_str: str) -> float:
|
| 171 |
+
"""Extract numeric value from HTML formatted metric string.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
html_str: HTML string with embedded numeric value
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
Extracted numeric value
|
| 178 |
+
"""
|
| 179 |
+
import re
|
| 180 |
+
# Extract the number from the span at the end: <span ...>0.XXX</span>
|
| 181 |
+
match = re.search(r'<span[^>]*>([\d.]+)</span>', html_str)
|
| 182 |
+
if match:
|
| 183 |
+
return float(match.group(1))
|
| 184 |
+
# Fallback: if it's already a number
|
| 185 |
+
try:
|
| 186 |
+
return float(html_str)
|
| 187 |
+
except (ValueError, TypeError):
|
| 188 |
+
return 0.0
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def _export_results_to_csv(query_segments: list, matches_dict: dict, threshold: float) -> str:
|
| 192 |
+
"""Export results to a CSV file.
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
query_segments: List of query segments with find counts
|
| 196 |
+
matches_dict: Dictionary mapping query IDs to matches
|
| 197 |
+
threshold: Classification probability threshold
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
Path to the temporary CSV file
|
| 201 |
+
"""
|
| 202 |
+
# Create a temporary file
|
| 203 |
+
temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv', newline='', encoding='utf-8')
|
| 204 |
+
|
| 205 |
+
with temp_file as f:
|
| 206 |
+
writer = csv.writer(f)
|
| 207 |
+
|
| 208 |
+
# Write header
|
| 209 |
+
writer.writerow([
|
| 210 |
+
"Query_Segment_ID",
|
| 211 |
+
"Query_Text",
|
| 212 |
+
"Source_Segment_ID",
|
| 213 |
+
"Source_Text",
|
| 214 |
+
"Similarity",
|
| 215 |
+
"Probability",
|
| 216 |
+
"Above_Threshold"
|
| 217 |
+
])
|
| 218 |
+
|
| 219 |
+
# Write data for each query segment
|
| 220 |
+
for query_row in query_segments:
|
| 221 |
+
query_id = query_row[0]
|
| 222 |
+
query_text = query_row[1]
|
| 223 |
+
|
| 224 |
+
# Get matches for this query segment
|
| 225 |
+
matches = matches_dict.get(query_id, [])
|
| 226 |
+
|
| 227 |
+
if matches:
|
| 228 |
+
for match in matches:
|
| 229 |
+
source_id = match[0]
|
| 230 |
+
source_text = match[1]
|
| 231 |
+
# Extract numeric values from HTML formatted strings
|
| 232 |
+
similarity = _extract_numeric_from_html(match[2]) if isinstance(match[2], str) else match[2]
|
| 233 |
+
probability = _extract_numeric_from_html(match[3]) if isinstance(match[3], str) else match[3]
|
| 234 |
+
above_threshold = "Yes" if probability >= threshold else "No"
|
| 235 |
+
|
| 236 |
+
writer.writerow([
|
| 237 |
+
query_id,
|
| 238 |
+
query_text,
|
| 239 |
+
source_id,
|
| 240 |
+
source_text,
|
| 241 |
+
similarity,
|
| 242 |
+
probability,
|
| 243 |
+
above_threshold
|
| 244 |
+
])
|
| 245 |
+
else:
|
| 246 |
+
# Write row even if no matches
|
| 247 |
+
writer.writerow([
|
| 248 |
+
query_id,
|
| 249 |
+
query_text,
|
| 250 |
+
"",
|
| 251 |
+
"",
|
| 252 |
+
"",
|
| 253 |
+
"",
|
| 254 |
+
""
|
| 255 |
+
])
|
| 256 |
+
|
| 257 |
+
return temp_file.name
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def build_results_stage() -> tuple[gr.Step, dict[str, Any]]:
|
| 261 |
+
"""Build the results stage UI.
|
| 262 |
+
|
| 263 |
+
Returns:
|
| 264 |
+
A tuple of (Step component, components_dict) where components_dict contains
|
| 265 |
+
references to all interactive components that need to be accessed later.
|
| 266 |
+
"""
|
| 267 |
+
with gr.Step("Results", id=2) as step:
|
| 268 |
+
# State to hold current query segments and matches
|
| 269 |
+
query_segments_state = gr.State(value=[])
|
| 270 |
+
matches_dict_state = gr.State(value={})
|
| 271 |
+
gr.Markdown("### 📊 Step 3: View Results")
|
| 272 |
+
gr.Markdown(
|
| 273 |
+
"Select a query segment on the left to view potential intertextual references from the source document. "
|
| 274 |
+
"Similarity measures the cosine similarity between embeddings (0-1, higher = more similar). "
|
| 275 |
+
"Probability is the classifier's confidence that the pair represents an intertextual reference (0-1, higher = more likely)."
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
# Download button
|
| 279 |
+
with gr.Row():
|
| 280 |
+
download_btn = gr.DownloadButton("Download Results as CSV", variant="primary")
|
| 281 |
+
|
| 282 |
+
with gr.Row():
|
| 283 |
+
# Left column: Query segments
|
| 284 |
+
with gr.Column(scale=1):
|
| 285 |
+
gr.Markdown("### Query Document Segments")
|
| 286 |
+
query_segments = gr.Dataframe(
|
| 287 |
+
value=[],
|
| 288 |
+
headers=["Segment ID", "Text", "Finds"],
|
| 289 |
+
interactive=False,
|
| 290 |
+
show_label=False,
|
| 291 |
+
label="Query Document Segments",
|
| 292 |
+
wrap=True,
|
| 293 |
+
max_height=600,
|
| 294 |
+
col_count=(3, "fixed"),
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# Right column: Matching source segments
|
| 298 |
+
with gr.Column(scale=1):
|
| 299 |
+
gr.Markdown("### Potential Intertextual References")
|
| 300 |
+
|
| 301 |
+
# Prompt shown initially
|
| 302 |
+
selection_prompt = gr.Markdown(
|
| 303 |
+
"""
|
| 304 |
+
<div style="display: flex; align-items: center; justify-content: center; height: 400px; font-size: 18px; color: #666;">
|
| 305 |
+
<div style="text-align: center;">
|
| 306 |
+
<div style="font-size: 48px; margin-bottom: 20px;">←</div>
|
| 307 |
+
<div>Select a query segment to view</div>
|
| 308 |
+
<div>potential intertextual references</div>
|
| 309 |
+
</div>
|
| 310 |
+
</div>
|
| 311 |
+
""",
|
| 312 |
+
visible=True
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
# Dataframe hidden initially
|
| 316 |
+
source_matches = gr.Dataframe(
|
| 317 |
+
headers=["Source ID", "Source Text", "Similarity", "Probability"],
|
| 318 |
+
interactive=False,
|
| 319 |
+
show_label=False,
|
| 320 |
+
label="Potential Intertextual References from Source Document",
|
| 321 |
+
wrap=True,
|
| 322 |
+
max_height=600,
|
| 323 |
+
visible=False,
|
| 324 |
+
datatype=["str", "str", "html", "html"], # Enable HTML rendering for metric columns
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
with gr.Row():
|
| 328 |
+
restart_btn = gr.Button("← Start Over", size="lg")
|
| 329 |
+
|
| 330 |
+
# Return the step and all components that need to be accessed
|
| 331 |
+
components = {
|
| 332 |
+
"query_segments": query_segments,
|
| 333 |
+
"query_segments_state": query_segments_state,
|
| 334 |
+
"matches_dict_state": matches_dict_state,
|
| 335 |
+
"source_matches": source_matches,
|
| 336 |
+
"selection_prompt": selection_prompt,
|
| 337 |
+
"download_btn": download_btn,
|
| 338 |
+
"restart_btn": restart_btn,
|
| 339 |
+
}
|
| 340 |
+
|
| 341 |
+
return step, components
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
def setup_results_handlers(components: dict, walkthrough: gr.Walkthrough) -> None:
|
| 345 |
+
"""Set up event handlers for the results stage.
|
| 346 |
+
|
| 347 |
+
Args:
|
| 348 |
+
components: Dictionary of UI components from build_results_stage
|
| 349 |
+
walkthrough: The Walkthrough component for navigation
|
| 350 |
+
"""
|
| 351 |
+
# Selection handler for query segments
|
| 352 |
+
components["query_segments"].select(
|
| 353 |
+
fn=_on_query_select,
|
| 354 |
+
inputs=[components["query_segments_state"], components["matches_dict_state"]],
|
| 355 |
+
outputs=[components["selection_prompt"], components["source_matches"]],
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# Restart button: Step 3 → Step 1
|
| 359 |
+
components["restart_btn"].click(
|
| 360 |
+
fn=lambda: gr.Walkthrough(selected=0),
|
| 361 |
+
outputs=walkthrough,
|
| 362 |
+
)
|