Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,144 +1,82 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
-
from transformers import BitsAndBytesConfig
|
| 6 |
import os
|
| 7 |
|
| 8 |
def initialize_model():
|
| 9 |
-
"""Initialize
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
if token:
|
| 13 |
-
login(token)
|
| 14 |
-
|
| 15 |
-
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 16 |
-
|
| 17 |
-
# Load tokenizer
|
| 18 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 19 |
|
| 20 |
try:
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
|
|
|
| 24 |
device_map="cpu",
|
| 25 |
-
|
| 26 |
-
low_cpu_mem_usage=True
|
| 27 |
)
|
|
|
|
|
|
|
|
|
|
| 28 |
except Exception as e:
|
| 29 |
print(f"Error loading model: {str(e)}")
|
| 30 |
raise e
|
| 31 |
|
| 32 |
-
|
| 33 |
-
if tokenizer.pad_token is None:
|
| 34 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 35 |
-
|
| 36 |
-
return model, tokenizer
|
| 37 |
-
|
| 38 |
-
def format_prompt(user_input, conversation_history=[]):
|
| 39 |
-
"""Format the prompt according to TinyLlama's expected chat format"""
|
| 40 |
-
messages = []
|
| 41 |
-
|
| 42 |
-
# Add conversation history
|
| 43 |
-
for turn in conversation_history:
|
| 44 |
-
messages.append({"role": "user", "content": turn["user"]})
|
| 45 |
-
messages.append({"role": "assistant", "content": turn["assistant"]})
|
| 46 |
-
|
| 47 |
-
# Add current user input
|
| 48 |
-
messages.append({"role": "user", "content": user_input})
|
| 49 |
-
|
| 50 |
-
# Format into TinyLlama chat format
|
| 51 |
-
formatted_prompt = "<|system|>You are a helpful AI assistant.</s>"
|
| 52 |
-
|
| 53 |
-
for message in messages:
|
| 54 |
-
if message["role"] == "user":
|
| 55 |
-
formatted_prompt += f"<|user|>{message['content']}</s>"
|
| 56 |
-
else:
|
| 57 |
-
formatted_prompt += f"<|assistant|>{message['content']}</s>"
|
| 58 |
-
|
| 59 |
-
formatted_prompt += "<|assistant|>"
|
| 60 |
-
return formatted_prompt
|
| 61 |
-
|
| 62 |
-
def generate_response(model, tokenizer, prompt, conversation_history):
|
| 63 |
"""Generate model response"""
|
| 64 |
try:
|
| 65 |
-
# Format
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
# Calculate max new tokens
|
| 76 |
-
input_length = inputs["input_ids"].shape[1]
|
| 77 |
-
max_model_length = 1024
|
| 78 |
-
max_new_tokens = min(150, max_model_length - input_length)
|
| 79 |
-
|
| 80 |
-
# Generate response
|
| 81 |
-
outputs = model.generate(
|
| 82 |
-
inputs["input_ids"],
|
| 83 |
-
attention_mask=inputs["attention_mask"],
|
| 84 |
-
max_new_tokens=max_new_tokens,
|
| 85 |
temperature=0.7,
|
| 86 |
top_p=0.9,
|
| 87 |
-
|
| 88 |
do_sample=True,
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
eos_token_id=tokenizer.encode("</s>")[0] # Set end token
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
# Decode response and extract only the assistant's message
|
| 95 |
-
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 96 |
|
| 97 |
-
# Extract only the
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
except
|
| 103 |
-
|
| 104 |
-
torch.cuda.empty_cache()
|
| 105 |
-
return "I apologize, but I ran out of memory. Please try a shorter message or clear the chat history."
|
| 106 |
-
else:
|
| 107 |
-
return f"An error occurred: {str(e)}"
|
| 108 |
|
| 109 |
def main():
|
| 110 |
-
st.set_page_config(
|
| 111 |
-
page_title="LLM Chat Interface",
|
| 112 |
-
page_icon="🤖",
|
| 113 |
-
layout="wide"
|
| 114 |
-
)
|
| 115 |
|
| 116 |
-
|
| 117 |
-
st.markdown("""
|
| 118 |
-
<style>
|
| 119 |
-
.stChat {
|
| 120 |
-
padding-top: 0rem;
|
| 121 |
-
}
|
| 122 |
-
.stChatMessage {
|
| 123 |
-
padding: 0.5rem;
|
| 124 |
-
}
|
| 125 |
-
</style>
|
| 126 |
-
""", unsafe_allow_html=True)
|
| 127 |
-
|
| 128 |
-
st.title("Chat with TinyLlama 🤖")
|
| 129 |
|
| 130 |
-
# Initialize session state
|
| 131 |
if "chat_history" not in st.session_state:
|
| 132 |
st.session_state.chat_history = []
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
# Initialize model (only once)
|
| 135 |
-
if
|
| 136 |
-
with st.spinner("Loading the model...
|
| 137 |
try:
|
| 138 |
-
|
| 139 |
-
st.session_state.
|
| 140 |
st.session_state.tokenizer = tokenizer
|
| 141 |
-
st.
|
| 142 |
except Exception as e:
|
| 143 |
st.error(f"Error loading model: {str(e)}")
|
| 144 |
return
|
|
@@ -151,7 +89,7 @@ def main():
|
|
| 151 |
st.write(message["assistant"])
|
| 152 |
|
| 153 |
# Chat input
|
| 154 |
-
if prompt := st.chat_input("
|
| 155 |
# Display user message
|
| 156 |
with st.chat_message("user"):
|
| 157 |
st.write(prompt)
|
|
@@ -163,7 +101,7 @@ def main():
|
|
| 163 |
st.session_state.chat_history.append(current_turn)
|
| 164 |
|
| 165 |
response = generate_response(
|
| 166 |
-
st.session_state.
|
| 167 |
st.session_state.tokenizer,
|
| 168 |
prompt,
|
| 169 |
st.session_state.chat_history
|
|
@@ -172,23 +110,22 @@ def main():
|
|
| 172 |
st.write(response)
|
| 173 |
st.session_state.chat_history[-1]["assistant"] = response
|
| 174 |
|
| 175 |
-
#
|
| 176 |
if len(st.session_state.chat_history) > 5:
|
| 177 |
st.session_state.chat_history = st.session_state.chat_history[-5:]
|
| 178 |
|
| 179 |
-
# Sidebar
|
| 180 |
with st.sidebar:
|
| 181 |
-
st.title("Controls")
|
| 182 |
if st.button("Clear Chat"):
|
| 183 |
st.session_state.chat_history = []
|
| 184 |
st.rerun()
|
| 185 |
|
| 186 |
st.markdown("---")
|
| 187 |
st.markdown("""
|
| 188 |
-
###
|
| 189 |
-
- Using
|
| 190 |
-
-
|
| 191 |
-
-
|
| 192 |
""")
|
| 193 |
|
| 194 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 3 |
import torch
|
|
|
|
| 4 |
import os
|
| 5 |
|
| 6 |
def initialize_model():
|
| 7 |
+
"""Initialize a small and fast model for CPU"""
|
| 8 |
+
# Using a tiny model optimized for CPU
|
| 9 |
+
model_id = "facebook/opt-125m" # Much smaller model (125M parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
try:
|
| 12 |
+
# Initialize the pipeline directly - more efficient than loading model separately
|
| 13 |
+
pipe = pipeline(
|
| 14 |
+
"text-generation",
|
| 15 |
+
model=model_id,
|
| 16 |
device_map="cpu",
|
| 17 |
+
model_kwargs={"low_cpu_mem_usage": True}
|
|
|
|
| 18 |
)
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 20 |
+
|
| 21 |
+
return pipe, tokenizer
|
| 22 |
except Exception as e:
|
| 23 |
print(f"Error loading model: {str(e)}")
|
| 24 |
raise e
|
| 25 |
|
| 26 |
+
def generate_response(pipe, tokenizer, prompt, conversation_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"""Generate model response"""
|
| 28 |
try:
|
| 29 |
+
# Format conversation context
|
| 30 |
+
context = ""
|
| 31 |
+
for turn in conversation_history[-3:]: # Only use last 3 turns for efficiency
|
| 32 |
+
context += f"Human: {turn['user']}\nAssistant: {turn['assistant']}\n"
|
| 33 |
|
| 34 |
+
# Create the full prompt
|
| 35 |
+
full_prompt = f"{context}Human: {prompt}\nAssistant:"
|
| 36 |
|
| 37 |
+
# Generate response with conservative parameters
|
| 38 |
+
response = pipe(
|
| 39 |
+
full_prompt,
|
| 40 |
+
max_new_tokens=50, # Limit response length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
temperature=0.7,
|
| 42 |
top_p=0.9,
|
| 43 |
+
num_return_sequences=1,
|
| 44 |
do_sample=True,
|
| 45 |
+
pad_token_id=tokenizer.pad_token_id if tokenizer.pad_token_id else tokenizer.eos_token_id
|
| 46 |
+
)[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# Extract only the assistant's response
|
| 49 |
+
try:
|
| 50 |
+
assistant_response = response.split("Assistant:")[-1].strip()
|
| 51 |
+
if not assistant_response:
|
| 52 |
+
return "I apologize, but I couldn't generate a proper response."
|
| 53 |
+
return assistant_response
|
| 54 |
+
except:
|
| 55 |
+
return response.split(prompt)[-1].strip()
|
| 56 |
|
| 57 |
+
except Exception as e:
|
| 58 |
+
return f"An error occurred: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def main():
|
| 61 |
+
st.set_page_config(page_title="LLM Chat Interface", page_icon="🤖")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
st.title("💬 Quick Chat Assistant")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Initialize session state
|
| 66 |
if "chat_history" not in st.session_state:
|
| 67 |
st.session_state.chat_history = []
|
| 68 |
+
|
| 69 |
+
if "model_loaded" not in st.session_state:
|
| 70 |
+
st.session_state.model_loaded = False
|
| 71 |
|
| 72 |
# Initialize model (only once)
|
| 73 |
+
if not st.session_state.model_loaded:
|
| 74 |
+
with st.spinner("Loading the model... (this should take just a few seconds)"):
|
| 75 |
try:
|
| 76 |
+
pipe, tokenizer = initialize_model()
|
| 77 |
+
st.session_state.pipe = pipe
|
| 78 |
st.session_state.tokenizer = tokenizer
|
| 79 |
+
st.session_state.model_loaded = True
|
| 80 |
except Exception as e:
|
| 81 |
st.error(f"Error loading model: {str(e)}")
|
| 82 |
return
|
|
|
|
| 89 |
st.write(message["assistant"])
|
| 90 |
|
| 91 |
# Chat input
|
| 92 |
+
if prompt := st.chat_input("Ask me anything!"):
|
| 93 |
# Display user message
|
| 94 |
with st.chat_message("user"):
|
| 95 |
st.write(prompt)
|
|
|
|
| 101 |
st.session_state.chat_history.append(current_turn)
|
| 102 |
|
| 103 |
response = generate_response(
|
| 104 |
+
st.session_state.pipe,
|
| 105 |
st.session_state.tokenizer,
|
| 106 |
prompt,
|
| 107 |
st.session_state.chat_history
|
|
|
|
| 110 |
st.write(response)
|
| 111 |
st.session_state.chat_history[-1]["assistant"] = response
|
| 112 |
|
| 113 |
+
# Keep only last 5 turns
|
| 114 |
if len(st.session_state.chat_history) > 5:
|
| 115 |
st.session_state.chat_history = st.session_state.chat_history[-5:]
|
| 116 |
|
| 117 |
+
# Sidebar
|
| 118 |
with st.sidebar:
|
|
|
|
| 119 |
if st.button("Clear Chat"):
|
| 120 |
st.session_state.chat_history = []
|
| 121 |
st.rerun()
|
| 122 |
|
| 123 |
st.markdown("---")
|
| 124 |
st.markdown("""
|
| 125 |
+
### Chat Info
|
| 126 |
+
- Using OPT-125M model
|
| 127 |
+
- Optimized for quick responses
|
| 128 |
+
- Best for short conversations
|
| 129 |
""")
|
| 130 |
|
| 131 |
if __name__ == "__main__":
|