Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,137 @@
|
|
| 1 |
-
|
| 2 |
from huggingface_hub import login
|
|
|
|
|
|
|
| 3 |
import os
|
| 4 |
-
token = os.environ.get("hf")
|
| 5 |
-
login(token)
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
if st.
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
)
|
| 56 |
-
|
| 57 |
-
response
|
| 58 |
-
st.
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
from huggingface_hub import login
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 4 |
+
import torch
|
| 5 |
import os
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
def initialize_model():
|
| 8 |
+
"""Initialize the model and tokenizer"""
|
| 9 |
+
# Log in to Hugging Face
|
| 10 |
+
token = os.environ.get("hf")
|
| 11 |
+
login(token)
|
| 12 |
+
|
| 13 |
+
# Define the model ID and device
|
| 14 |
+
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
|
| 17 |
+
# Configure INT8 quantization
|
| 18 |
+
bnb_config = BitsAndBytesConfig(
|
| 19 |
+
load_in_8bit=True,
|
| 20 |
+
llm_int8_enable_fp32_cpu_offload=True
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# Load tokenizer and model
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
model_id,
|
| 27 |
+
quantization_config=bnb_config,
|
| 28 |
+
device_map="auto"
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Ensure padding token is defined
|
| 32 |
+
if tokenizer.pad_token is None:
|
| 33 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 34 |
+
|
| 35 |
+
return model, tokenizer, device
|
| 36 |
+
|
| 37 |
+
def format_conversation(conversation_history):
|
| 38 |
+
"""Format the conversation history into a single string."""
|
| 39 |
+
formatted = ""
|
| 40 |
+
for turn in conversation_history:
|
| 41 |
+
formatted += f"User: {turn['user']}\nAssistant: {turn['assistant']}\n"
|
| 42 |
+
return formatted.strip()
|
| 43 |
+
|
| 44 |
+
def generate_response(model, tokenizer, device, prompt, conversation_history):
|
| 45 |
+
"""Generate model response"""
|
| 46 |
+
# Format the entire conversation context
|
| 47 |
+
context = format_conversation(conversation_history[:-1])
|
| 48 |
+
if context:
|
| 49 |
+
full_prompt = f"{context}\nUser: {prompt}"
|
| 50 |
+
else:
|
| 51 |
+
full_prompt = f"User: {prompt}"
|
| 52 |
|
| 53 |
+
# Tokenize input
|
| 54 |
+
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
| 55 |
+
|
| 56 |
+
# Calculate max new tokens
|
| 57 |
+
input_length = inputs["input_ids"].shape[1]
|
| 58 |
+
max_model_length = 2048
|
| 59 |
+
max_new_tokens = min(200, max_model_length - input_length)
|
| 60 |
+
|
| 61 |
+
# Generate response
|
| 62 |
+
outputs = model.generate(
|
| 63 |
+
inputs["input_ids"],
|
| 64 |
+
attention_mask=inputs["attention_mask"],
|
| 65 |
+
max_new_tokens=max_new_tokens,
|
| 66 |
+
temperature=0.7,
|
| 67 |
+
top_p=0.9,
|
| 68 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 69 |
+
do_sample=True,
|
| 70 |
+
min_length=20,
|
| 71 |
+
no_repeat_ngram_size=3
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Decode response
|
| 75 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 76 |
+
response_parts = response.split("User: ")
|
| 77 |
+
model_response = response_parts[-1].split("Assistant: ")[-1].strip()
|
| 78 |
+
|
| 79 |
+
return model_response
|
| 80 |
+
|
| 81 |
+
def main():
|
| 82 |
+
st.set_page_config(page_title="LLM Chat Interface", page_icon="🤖")
|
| 83 |
+
st.title("Chat with LLM 🤖")
|
| 84 |
+
|
| 85 |
+
# Initialize session state for chat history
|
| 86 |
+
if "chat_history" not in st.session_state:
|
| 87 |
+
st.session_state.chat_history = []
|
| 88 |
+
|
| 89 |
+
# Initialize model (only once)
|
| 90 |
+
if "model" not in st.session_state:
|
| 91 |
+
with st.spinner("Loading the model... This might take a minute..."):
|
| 92 |
+
model, tokenizer, device = initialize_model()
|
| 93 |
+
st.session_state.model = model
|
| 94 |
+
st.session_state.tokenizer = tokenizer
|
| 95 |
+
st.session_state.device = device
|
| 96 |
+
|
| 97 |
+
# Display chat messages
|
| 98 |
+
for message in st.session_state.chat_history:
|
| 99 |
+
with st.chat_message("user"):
|
| 100 |
+
st.write(message["user"])
|
| 101 |
+
with st.chat_message("assistant"):
|
| 102 |
+
st.write(message["assistant"])
|
| 103 |
+
|
| 104 |
+
# Chat input
|
| 105 |
+
if prompt := st.chat_input("What would you like to know?"):
|
| 106 |
+
# Display user message
|
| 107 |
+
with st.chat_message("user"):
|
| 108 |
+
st.write(prompt)
|
| 109 |
+
|
| 110 |
+
# Generate and display assistant response
|
| 111 |
+
with st.chat_message("assistant"):
|
| 112 |
+
with st.spinner("Thinking..."):
|
| 113 |
+
current_turn = {"user": prompt, "assistant": ""}
|
| 114 |
+
st.session_state.chat_history.append(current_turn)
|
| 115 |
+
|
| 116 |
+
response = generate_response(
|
| 117 |
+
st.session_state.model,
|
| 118 |
+
st.session_state.tokenizer,
|
| 119 |
+
st.session_state.device,
|
| 120 |
+
prompt,
|
| 121 |
+
st.session_state.chat_history
|
| 122 |
)
|
| 123 |
+
|
| 124 |
+
st.write(response)
|
| 125 |
+
st.session_state.chat_history[-1]["assistant"] = response
|
| 126 |
+
|
| 127 |
+
# Manage context window
|
| 128 |
+
if len(st.session_state.chat_history) > 5:
|
| 129 |
+
st.session_state.chat_history = st.session_state.chat_history[-5:]
|
| 130 |
+
|
| 131 |
+
# Add a clear chat button
|
| 132 |
+
if st.sidebar.button("Clear Chat"):
|
| 133 |
+
st.session_state.chat_history = []
|
| 134 |
+
st.rerun()
|
| 135 |
|
| 136 |
+
if __name__ == "__main__":
|
| 137 |
+
main()
|