Work in process
Browse files
app.py
CHANGED
|
@@ -9,23 +9,240 @@
|
|
| 9 |
# print("Command executed successfully.")
|
| 10 |
# else:
|
| 11 |
# print("Command failed with return code:", result.returncode)
|
|
|
|
| 12 |
import gc
|
|
|
|
| 13 |
import math
|
| 14 |
-
|
| 15 |
-
import torch.multiprocessing as mp
|
| 16 |
import os
|
| 17 |
-
|
|
|
|
| 18 |
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
|
|
|
|
| 19 |
import ffmpeg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
import cv2
|
|
|
|
| 21 |
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
def
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
def
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
combined_frames = sorted([os.path.join(output_combined_dir, img_name) for img_name in os.listdir(output_combined_dir)])
|
| 31 |
if combined_frames:
|
|
@@ -37,7 +254,7 @@ def show_res_by_slider(frame_per, click_stack):
|
|
| 37 |
total_frames_num = len(output_masked_frame_path)
|
| 38 |
if total_frames_num == 0:
|
| 39 |
print("No output results found")
|
| 40 |
-
return None, None
|
| 41 |
else:
|
| 42 |
frame_num = math.floor(total_frames_num * frame_per / 100)
|
| 43 |
if frame_per == 100:
|
|
@@ -46,11 +263,87 @@ def show_res_by_slider(frame_per, click_stack):
|
|
| 46 |
print(f"{chosen_frame_path}")
|
| 47 |
chosen_frame_show = cv2.imread(chosen_frame_path)
|
| 48 |
chosen_frame_show = cv2.cvtColor(chosen_frame_show, cv2.COLOR_BGR2RGB)
|
| 49 |
-
points_dict, labels_dict
|
| 50 |
if frame_num in points_dict and frame_num in labels_dict:
|
| 51 |
chosen_frame_show = draw_markers(chosen_frame_show, points_dict[frame_num], labels_dict[frame_num])
|
| 52 |
return chosen_frame_show, chosen_frame_show, frame_num
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def increment_ann_obj_id(ann_obj_id):
|
| 55 |
ann_obj_id += 1
|
| 56 |
return ann_obj_id
|
|
@@ -58,40 +351,141 @@ def increment_ann_obj_id(ann_obj_id):
|
|
| 58 |
def drawing_board_get_input_first_frame(input_first_frame):
|
| 59 |
return input_first_frame
|
| 60 |
|
| 61 |
-
def
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
def seg_track_app():
|
| 82 |
-
import gradio as gr
|
| 83 |
|
| 84 |
-
|
| 85 |
-
return sam_click_wrapper1(checkpoint, frame_num, point_mode, click_stack, ann_obj_id, [evt.index[0], evt.index[1]])
|
| 86 |
|
| 87 |
-
def
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
scale_slider = gr.Slider.update(minimum=1.0,
|
| 96 |
maximum=fps,
|
| 97 |
step=1.0,
|
|
@@ -100,45 +494,107 @@ def seg_track_app():
|
|
| 100 |
maximum= total_frames / fps,
|
| 101 |
step=1.0/fps,
|
| 102 |
value=0.0,)
|
| 103 |
-
return scale_slider, frame_per
|
| 104 |
-
|
| 105 |
-
def get_meta_from_video(input_video, scale_slider):
|
| 106 |
-
import gradio as gr
|
| 107 |
-
output_dir = '/tmp/output_frames'
|
| 108 |
-
output_masks_dir = '/tmp/output_masks'
|
| 109 |
-
output_combined_dir = '/tmp/`output_combined`'
|
| 110 |
-
clear_folder(output_dir)
|
| 111 |
-
clear_folder(output_masks_dir)
|
| 112 |
-
clear_folder(output_combined_dir)
|
| 113 |
-
if input_video is None:
|
| 114 |
-
return ({}, {}, {}), None, None, 0, None, None, None, 0
|
| 115 |
-
cap = cv2.VideoCapture(input_video)
|
| 116 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 117 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 118 |
-
cap.release()
|
| 119 |
-
frame_interval = max(1, int(fps // scale_slider))
|
| 120 |
-
print(f"frame_interval: {frame_interval}")
|
| 121 |
-
try:
|
| 122 |
-
ffmpeg.input(input_video, hwaccel='cuda').output(
|
| 123 |
-
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
|
| 124 |
-
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
|
| 125 |
-
).run()
|
| 126 |
-
except:
|
| 127 |
-
print(f"ffmpeg cuda err")
|
| 128 |
-
ffmpeg.input(input_video).output(
|
| 129 |
-
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
|
| 130 |
-
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
|
| 131 |
-
).run()
|
| 132 |
-
|
| 133 |
-
first_frame_path = os.path.join(output_dir, '0000000.jpg')
|
| 134 |
-
first_frame = cv2.imread(first_frame_path)
|
| 135 |
-
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
frame_per = gr.Slider.update(minimum= 0.0,
|
| 138 |
maximum= total_frames / fps,
|
| 139 |
step=frame_interval / fps,
|
| 140 |
value=0.0,)
|
| 141 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
##########################################################
|
| 144 |
###################### Front-end ########################
|
|
@@ -152,8 +608,9 @@ def seg_track_app():
|
|
| 152 |
"""
|
| 153 |
|
| 154 |
app = gr.Blocks(css=css)
|
| 155 |
-
|
| 156 |
with app:
|
|
|
|
|
|
|
| 157 |
gr.Markdown(
|
| 158 |
'''
|
| 159 |
<div style="text-align:center; margin-bottom:20px;">
|
|
@@ -216,7 +673,7 @@ def seg_track_app():
|
|
| 216 |
'''
|
| 217 |
)
|
| 218 |
|
| 219 |
-
click_stack = gr.State(({}, {}
|
| 220 |
frame_num = gr.State(value=(int(0)))
|
| 221 |
ann_obj_id = gr.State(value=(int(0)))
|
| 222 |
last_draw = gr.State(None)
|
|
@@ -226,7 +683,7 @@ def seg_track_app():
|
|
| 226 |
with gr.Row():
|
| 227 |
tab_video_input = gr.Tab(label="Video input")
|
| 228 |
with tab_video_input:
|
| 229 |
-
input_video = gr.Video(label='Input video', elem_id="input_output_video")
|
| 230 |
with gr.Row():
|
| 231 |
checkpoint = gr.Dropdown(label="Model Size", choices=["tiny", "small", "base-plus", "large"], value="tiny")
|
| 232 |
scale_slider = gr.Slider(
|
|
@@ -251,7 +708,7 @@ def seg_track_app():
|
|
| 251 |
|
| 252 |
tab_click = gr.Tab(label="Point Prompt")
|
| 253 |
with tab_click:
|
| 254 |
-
input_first_frame = gr.Image(label='Segment result of first frame',interactive=True
|
| 255 |
with gr.Row():
|
| 256 |
point_mode = gr.Radio(
|
| 257 |
choices=["Positive", "Negative"],
|
|
@@ -324,20 +781,22 @@ def seg_track_app():
|
|
| 324 |
|
| 325 |
# listen to the preprocess button click to get the first frame of video with scaling
|
| 326 |
preprocess_button.click(
|
| 327 |
-
fn=
|
| 328 |
inputs=[
|
|
|
|
| 329 |
input_video,
|
| 330 |
scale_slider,
|
|
|
|
| 331 |
],
|
| 332 |
outputs=[
|
| 333 |
-
|
| 334 |
]
|
| 335 |
)
|
| 336 |
|
| 337 |
frame_per.release(
|
| 338 |
-
fn=
|
| 339 |
inputs=[
|
| 340 |
-
frame_per, click_stack
|
| 341 |
],
|
| 342 |
outputs=[
|
| 343 |
input_first_frame, drawing_board, frame_num
|
|
@@ -346,9 +805,9 @@ def seg_track_app():
|
|
| 346 |
|
| 347 |
# Interactively modify the mask acc click
|
| 348 |
input_first_frame.select(
|
| 349 |
-
fn=
|
| 350 |
inputs=[
|
| 351 |
-
|
| 352 |
],
|
| 353 |
outputs=[
|
| 354 |
input_first_frame, drawing_board, click_stack
|
|
@@ -357,10 +816,9 @@ def seg_track_app():
|
|
| 357 |
|
| 358 |
# Track object in video
|
| 359 |
track_for_video.click(
|
| 360 |
-
fn=
|
| 361 |
inputs=[
|
| 362 |
-
|
| 363 |
-
checkpoint,
|
| 364 |
frame_num,
|
| 365 |
input_video,
|
| 366 |
],
|
|
@@ -374,17 +832,17 @@ def seg_track_app():
|
|
| 374 |
)
|
| 375 |
|
| 376 |
reset_button.click(
|
| 377 |
-
fn=
|
| 378 |
-
inputs=[],
|
| 379 |
outputs=[
|
| 380 |
click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
| 381 |
]
|
| 382 |
)
|
| 383 |
|
| 384 |
new_object_button.click(
|
| 385 |
-
fn=
|
| 386 |
inputs=[
|
| 387 |
-
ann_obj_id
|
| 388 |
],
|
| 389 |
outputs=[
|
| 390 |
ann_obj_id
|
|
@@ -392,30 +850,33 @@ def seg_track_app():
|
|
| 392 |
)
|
| 393 |
|
| 394 |
tab_stroke.select(
|
| 395 |
-
fn=
|
| 396 |
-
inputs=[input_first_frame
|
| 397 |
outputs=[drawing_board,],
|
| 398 |
)
|
| 399 |
|
| 400 |
seg_acc_stroke.click(
|
| 401 |
-
fn=
|
| 402 |
inputs=[
|
| 403 |
-
|
| 404 |
],
|
| 405 |
outputs=[
|
| 406 |
-
|
| 407 |
]
|
| 408 |
)
|
| 409 |
|
| 410 |
input_video.change(
|
| 411 |
-
fn=
|
| 412 |
-
inputs=[input_video],
|
| 413 |
-
outputs=[scale_slider, frame_per]
|
| 414 |
)
|
| 415 |
|
| 416 |
app.queue(concurrency_count=1)
|
| 417 |
-
app.launch(debug=True, share=False)
|
| 418 |
|
| 419 |
if __name__ == "__main__":
|
| 420 |
-
mp.set_start_method(
|
|
|
|
|
|
|
|
|
|
| 421 |
seg_track_app()
|
|
|
|
| 9 |
# print("Command executed successfully.")
|
| 10 |
# else:
|
| 11 |
# print("Command failed with return code:", result.returncode)
|
| 12 |
+
import datetime
|
| 13 |
import gc
|
| 14 |
+
import hashlib
|
| 15 |
import math
|
| 16 |
+
import multiprocessing as mp
|
|
|
|
| 17 |
import os
|
| 18 |
+
import threading
|
| 19 |
+
import time
|
| 20 |
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
|
| 21 |
+
import shutil
|
| 22 |
import ffmpeg
|
| 23 |
+
from moviepy.editor import ImageSequenceClip
|
| 24 |
+
import zipfile
|
| 25 |
+
# import gradio as gr
|
| 26 |
+
import torch
|
| 27 |
+
import numpy as np
|
| 28 |
+
import matplotlib.pyplot as plt
|
| 29 |
+
from PIL import Image
|
| 30 |
+
from sam2.build_sam import build_sam2
|
| 31 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 32 |
+
from sam2.build_sam import build_sam2_video_predictor
|
| 33 |
import cv2
|
| 34 |
+
import uuid
|
| 35 |
|
| 36 |
+
user_processes = {}
|
| 37 |
+
PROCESS_TIMEOUT = datetime.timedelta(minutes=4)
|
| 38 |
|
| 39 |
+
def reset(seg_tracker):
|
| 40 |
+
if seg_tracker is not None:
|
| 41 |
+
predictor, inference_state, image_predictor = seg_tracker
|
| 42 |
+
predictor.reset_state(inference_state)
|
| 43 |
+
del predictor
|
| 44 |
+
del inference_state
|
| 45 |
+
del image_predictor
|
| 46 |
+
del seg_tracker
|
| 47 |
+
gc.collect()
|
| 48 |
+
torch.cuda.empty_cache()
|
| 49 |
+
return None, ({}, {}), None, None, 0, None, None, None, 0
|
| 50 |
|
| 51 |
+
def extract_video_info(input_video):
|
| 52 |
+
if input_video is None:
|
| 53 |
+
return 4, 4, None, None, None, None, None
|
| 54 |
+
cap = cv2.VideoCapture(input_video)
|
| 55 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 56 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 57 |
+
cap.release()
|
| 58 |
+
return fps, total_frames, None, None, None, None, None
|
| 59 |
+
|
| 60 |
+
def get_meta_from_video(session_id, input_video, scale_slider, checkpoint):
|
| 61 |
+
output_dir = f'/tmp/output_frames/{session_id}'
|
| 62 |
+
output_masks_dir = f'/tmp/output_masks/{session_id}'
|
| 63 |
+
output_combined_dir = f'/tmp/output_combined/{session_id}'
|
| 64 |
+
clear_folder(output_dir)
|
| 65 |
+
clear_folder(output_masks_dir)
|
| 66 |
+
clear_folder(output_combined_dir)
|
| 67 |
+
if input_video is None:
|
| 68 |
+
return None, ({}, {}), None, None, (4, 1, 4), None, None, None, 0
|
| 69 |
+
cap = cv2.VideoCapture(input_video)
|
| 70 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 71 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 72 |
+
cap.release()
|
| 73 |
+
frame_interval = max(1, int(fps // scale_slider))
|
| 74 |
+
print(f"frame_interval: {frame_interval}")
|
| 75 |
+
try:
|
| 76 |
+
ffmpeg.input(input_video, hwaccel='cuda').output(
|
| 77 |
+
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
|
| 78 |
+
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
|
| 79 |
+
).run()
|
| 80 |
+
except:
|
| 81 |
+
print(f"ffmpeg cuda err")
|
| 82 |
+
ffmpeg.input(input_video).output(
|
| 83 |
+
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
|
| 84 |
+
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
|
| 85 |
+
).run()
|
| 86 |
+
|
| 87 |
+
first_frame_path = os.path.join(output_dir, '0000000.jpg')
|
| 88 |
+
first_frame = cv2.imread(first_frame_path)
|
| 89 |
+
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
| 90 |
+
|
| 91 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
| 92 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
| 93 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 94 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 95 |
+
|
| 96 |
+
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_tiny.pt"
|
| 97 |
+
model_cfg = "sam2_hiera_t.yaml"
|
| 98 |
+
if checkpoint == "samll":
|
| 99 |
+
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_small.pt"
|
| 100 |
+
model_cfg = "sam2_hiera_s.yaml"
|
| 101 |
+
elif checkpoint == "base-plus":
|
| 102 |
+
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_base_plus.pt"
|
| 103 |
+
model_cfg = "sam2_hiera_b+.yaml"
|
| 104 |
+
elif checkpoint == "large":
|
| 105 |
+
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_large.pt"
|
| 106 |
+
model_cfg = "sam2_hiera_l.yaml"
|
| 107 |
+
|
| 108 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
|
| 109 |
+
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
| 110 |
+
image_predictor = SAM2ImagePredictor(sam2_model)
|
| 111 |
+
inference_state = predictor.init_state(video_path=output_dir)
|
| 112 |
+
predictor.reset_state(inference_state)
|
| 113 |
+
return (predictor, inference_state, image_predictor), ({}, {}), first_frame_rgb, first_frame_rgb, (fps, frame_interval, total_frames), None, None, None, 0
|
| 114 |
+
|
| 115 |
+
def mask2bbox(mask):
|
| 116 |
+
if len(np.where(mask > 0)[0]) == 0:
|
| 117 |
+
print(f'not mask')
|
| 118 |
+
return np.array([0, 0, 0, 0]).astype(np.int64), False
|
| 119 |
+
x_ = np.sum(mask, axis=0)
|
| 120 |
+
y_ = np.sum(mask, axis=1)
|
| 121 |
+
x0 = np.min(np.nonzero(x_)[0])
|
| 122 |
+
x1 = np.max(np.nonzero(x_)[0])
|
| 123 |
+
y0 = np.min(np.nonzero(y_)[0])
|
| 124 |
+
y1 = np.max(np.nonzero(y_)[0])
|
| 125 |
+
return np.array([x0, y0, x1, y1]).astype(np.int64), True
|
| 126 |
+
|
| 127 |
+
def sam_stroke(session_id, seg_tracker, drawing_board, last_draw, frame_num, ann_obj_id):
|
| 128 |
+
predictor, inference_state, image_predictor = seg_tracker
|
| 129 |
+
image_path = f'/tmp/output_frames/{session_id}/{frame_num:07d}.jpg'
|
| 130 |
+
image = cv2.imread(image_path)
|
| 131 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 132 |
+
display_image = drawing_board["image"]
|
| 133 |
+
image_predictor.set_image(image)
|
| 134 |
+
input_mask = drawing_board["mask"]
|
| 135 |
+
input_mask[input_mask != 0] = 255
|
| 136 |
+
if last_draw is not None:
|
| 137 |
+
diff_mask = cv2.absdiff(input_mask, last_draw)
|
| 138 |
+
input_mask = diff_mask
|
| 139 |
+
bbox, hasMask = mask2bbox(input_mask[:, :, 0])
|
| 140 |
+
if not hasMask :
|
| 141 |
+
return seg_tracker, display_image, display_image, None
|
| 142 |
+
masks, scores, logits = image_predictor.predict( point_coords=None, point_labels=None, box=bbox[None, :], multimask_output=False,)
|
| 143 |
+
mask = masks > 0.0
|
| 144 |
+
masked_frame = show_mask(mask, display_image, ann_obj_id)
|
| 145 |
+
masked_with_rect = draw_rect(masked_frame, bbox, ann_obj_id)
|
| 146 |
+
frame_idx, object_ids, masks = predictor.add_new_mask(inference_state, frame_idx=frame_num, obj_id=ann_obj_id, mask=mask[0])
|
| 147 |
+
last_draw = drawing_board["mask"]
|
| 148 |
+
return seg_tracker, masked_with_rect, masked_with_rect, last_draw
|
| 149 |
+
|
| 150 |
+
def draw_rect(image, bbox, obj_id):
|
| 151 |
+
cmap = plt.get_cmap("tab10")
|
| 152 |
+
color = np.array(cmap(obj_id)[:3])
|
| 153 |
+
rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8)))
|
| 154 |
+
inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8)))
|
| 155 |
+
x0, y0, x1, y1 = bbox
|
| 156 |
+
image_with_rect = cv2.rectangle(image.copy(), (x0, y0), (x1, y1), rgb_color, thickness=2)
|
| 157 |
+
return image_with_rect
|
| 158 |
+
|
| 159 |
+
def sam_click(session_id, seg_tracker, frame_num, point_mode, click_stack, ann_obj_id, point):
|
| 160 |
+
points_dict, labels_dict = click_stack
|
| 161 |
+
predictor, inference_state, image_predictor = seg_tracker
|
| 162 |
+
ann_frame_idx = frame_num # the frame index we interact with
|
| 163 |
+
print(f'ann_frame_idx: {ann_frame_idx}')
|
| 164 |
+
if point_mode == "Positive":
|
| 165 |
+
label = np.array([1], np.int32)
|
| 166 |
+
else:
|
| 167 |
+
label = np.array([0], np.int32)
|
| 168 |
+
|
| 169 |
+
if ann_frame_idx not in points_dict:
|
| 170 |
+
points_dict[ann_frame_idx] = {}
|
| 171 |
+
if ann_frame_idx not in labels_dict:
|
| 172 |
+
labels_dict[ann_frame_idx] = {}
|
| 173 |
+
|
| 174 |
+
if ann_obj_id not in points_dict[ann_frame_idx]:
|
| 175 |
+
points_dict[ann_frame_idx][ann_obj_id] = np.empty((0, 2), dtype=np.float32)
|
| 176 |
+
if ann_obj_id not in labels_dict[ann_frame_idx]:
|
| 177 |
+
labels_dict[ann_frame_idx][ann_obj_id] = np.empty((0,), dtype=np.int32)
|
| 178 |
+
|
| 179 |
+
points_dict[ann_frame_idx][ann_obj_id] = np.append(points_dict[ann_frame_idx][ann_obj_id], point, axis=0)
|
| 180 |
+
labels_dict[ann_frame_idx][ann_obj_id] = np.append(labels_dict[ann_frame_idx][ann_obj_id], label, axis=0)
|
| 181 |
+
|
| 182 |
+
click_stack = (points_dict, labels_dict)
|
| 183 |
+
|
| 184 |
+
frame_idx, out_obj_ids, out_mask_logits = predictor.add_new_points(
|
| 185 |
+
inference_state=inference_state,
|
| 186 |
+
frame_idx=ann_frame_idx,
|
| 187 |
+
obj_id=ann_obj_id,
|
| 188 |
+
points=points_dict[ann_frame_idx][ann_obj_id],
|
| 189 |
+
labels=labels_dict[ann_frame_idx][ann_obj_id],
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
image_path = f'/tmp/output_frames/{session_id}/{ann_frame_idx:07d}.jpg'
|
| 193 |
+
image = cv2.imread(image_path)
|
| 194 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 195 |
+
|
| 196 |
+
masked_frame = image.copy()
|
| 197 |
+
for i, obj_id in enumerate(out_obj_ids):
|
| 198 |
+
mask = (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 199 |
+
masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id)
|
| 200 |
+
masked_frame_with_markers = draw_markers(masked_frame, points_dict[ann_frame_idx], labels_dict[ann_frame_idx])
|
| 201 |
+
|
| 202 |
+
return seg_tracker, masked_frame_with_markers, masked_frame_with_markers, click_stack
|
| 203 |
+
|
| 204 |
+
def draw_markers(image, points_dict, labels_dict):
|
| 205 |
+
cmap = plt.get_cmap("tab10")
|
| 206 |
+
image_h, image_w = image.shape[:2]
|
| 207 |
+
marker_size = max(1, int(min(image_h, image_w) * 0.05))
|
| 208 |
+
|
| 209 |
+
for obj_id in points_dict:
|
| 210 |
+
color = np.array(cmap(obj_id)[:3])
|
| 211 |
+
rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8)))
|
| 212 |
+
inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8)))
|
| 213 |
+
for point, label in zip(points_dict[obj_id], labels_dict[obj_id]):
|
| 214 |
+
x, y = int(point[0]), int(point[1])
|
| 215 |
+
if label == 1:
|
| 216 |
+
cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_CROSS, markerSize=marker_size, thickness=2)
|
| 217 |
+
else:
|
| 218 |
+
cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_TILTED_CROSS, markerSize=int(marker_size / np.sqrt(2)), thickness=2)
|
| 219 |
+
|
| 220 |
+
return image
|
| 221 |
+
|
| 222 |
+
def show_mask(mask, image=None, obj_id=None):
|
| 223 |
+
cmap = plt.get_cmap("tab10")
|
| 224 |
+
cmap_idx = 0 if obj_id is None else obj_id
|
| 225 |
+
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
| 226 |
+
|
| 227 |
+
h, w = mask.shape[-2:]
|
| 228 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 229 |
+
mask_image = (mask_image * 255).astype(np.uint8)
|
| 230 |
+
if image is not None:
|
| 231 |
+
image_h, image_w = image.shape[:2]
|
| 232 |
+
if (image_h, image_w) != (h, w):
|
| 233 |
+
raise ValueError(f"Image dimensions ({image_h}, {image_w}) and mask dimensions ({h}, {w}) do not match")
|
| 234 |
+
colored_mask = np.zeros_like(image, dtype=np.uint8)
|
| 235 |
+
for c in range(3):
|
| 236 |
+
colored_mask[..., c] = mask_image[..., c]
|
| 237 |
+
alpha_mask = mask_image[..., 3] / 255.0
|
| 238 |
+
for c in range(3):
|
| 239 |
+
image[..., c] = np.where(alpha_mask > 0, (1 - alpha_mask) * image[..., c] + alpha_mask * colored_mask[..., c], image[..., c])
|
| 240 |
+
return image
|
| 241 |
+
return mask_image
|
| 242 |
+
|
| 243 |
+
def show_res_by_slider(session_id, frame_per, click_stack):
|
| 244 |
+
image_path = f'/tmp/output_frames/{session_id}'
|
| 245 |
+
output_combined_dir = f'/tmp/output_combined/{session_id}'
|
| 246 |
|
| 247 |
combined_frames = sorted([os.path.join(output_combined_dir, img_name) for img_name in os.listdir(output_combined_dir)])
|
| 248 |
if combined_frames:
|
|
|
|
| 254 |
total_frames_num = len(output_masked_frame_path)
|
| 255 |
if total_frames_num == 0:
|
| 256 |
print("No output results found")
|
| 257 |
+
return None, None, 0
|
| 258 |
else:
|
| 259 |
frame_num = math.floor(total_frames_num * frame_per / 100)
|
| 260 |
if frame_per == 100:
|
|
|
|
| 263 |
print(f"{chosen_frame_path}")
|
| 264 |
chosen_frame_show = cv2.imread(chosen_frame_path)
|
| 265 |
chosen_frame_show = cv2.cvtColor(chosen_frame_show, cv2.COLOR_BGR2RGB)
|
| 266 |
+
points_dict, labels_dict = click_stack
|
| 267 |
if frame_num in points_dict and frame_num in labels_dict:
|
| 268 |
chosen_frame_show = draw_markers(chosen_frame_show, points_dict[frame_num], labels_dict[frame_num])
|
| 269 |
return chosen_frame_show, chosen_frame_show, frame_num
|
| 270 |
|
| 271 |
+
def clear_folder(folder_path):
|
| 272 |
+
if os.path.exists(folder_path):
|
| 273 |
+
shutil.rmtree(folder_path)
|
| 274 |
+
os.makedirs(folder_path)
|
| 275 |
+
|
| 276 |
+
def zip_folder(folder_path, output_zip_path):
|
| 277 |
+
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_STORED) as zipf:
|
| 278 |
+
for root, _, files in os.walk(folder_path):
|
| 279 |
+
for file in files:
|
| 280 |
+
file_path = os.path.join(root, file)
|
| 281 |
+
zipf.write(file_path, os.path.relpath(file_path, folder_path))
|
| 282 |
+
|
| 283 |
+
def tracking_objects(session_id, seg_tracker, frame_num, input_video):
|
| 284 |
+
output_dir = f'/tmp/output_frames/{session_id}'
|
| 285 |
+
output_masks_dir = f'/tmp/output_masks/{session_id}'
|
| 286 |
+
output_combined_dir = f'/tmp/output_combined/{session_id}'
|
| 287 |
+
output_files_dir = f'/tmp/output_files/{session_id}'
|
| 288 |
+
output_video_path = f'{output_files_dir}/output_video.mp4'
|
| 289 |
+
output_zip_path = f'{output_files_dir}/output_masks.zip'
|
| 290 |
+
clear_folder(output_masks_dir)
|
| 291 |
+
clear_folder(output_combined_dir)
|
| 292 |
+
clear_folder(output_files_dir)
|
| 293 |
+
video_segments = {}
|
| 294 |
+
predictor, inference_state, image_predictor = seg_tracker
|
| 295 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
|
| 296 |
+
video_segments[out_frame_idx] = {
|
| 297 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 298 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
| 299 |
+
}
|
| 300 |
+
frame_files = sorted([f for f in os.listdir(output_dir) if f.endswith('.jpg')])
|
| 301 |
+
# for frame_idx in sorted(video_segments.keys()):
|
| 302 |
+
for frame_file in frame_files:
|
| 303 |
+
frame_idx = int(os.path.splitext(frame_file)[0])
|
| 304 |
+
frame_path = os.path.join(output_dir, frame_file)
|
| 305 |
+
image = cv2.imread(frame_path)
|
| 306 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 307 |
+
masked_frame = image.copy()
|
| 308 |
+
if frame_idx in video_segments:
|
| 309 |
+
for obj_id, mask in video_segments[frame_idx].items():
|
| 310 |
+
masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id)
|
| 311 |
+
mask_output_path = os.path.join(output_masks_dir, f'{obj_id}_{frame_idx:07d}.png')
|
| 312 |
+
cv2.imwrite(mask_output_path, show_mask(mask))
|
| 313 |
+
combined_output_path = os.path.join(output_combined_dir, f'{frame_idx:07d}.png')
|
| 314 |
+
combined_image_bgr = cv2.cvtColor(masked_frame, cv2.COLOR_RGB2BGR)
|
| 315 |
+
cv2.imwrite(combined_output_path, combined_image_bgr)
|
| 316 |
+
if frame_idx == frame_num:
|
| 317 |
+
final_masked_frame = masked_frame
|
| 318 |
+
|
| 319 |
+
cap = cv2.VideoCapture(input_video)
|
| 320 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 321 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 322 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 323 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 324 |
+
cap.release()
|
| 325 |
+
# output_frames = int(total_frames * scale_slider)
|
| 326 |
+
output_frames = len([name for name in os.listdir(output_combined_dir) if os.path.isfile(os.path.join(output_combined_dir, name)) and name.endswith('.png')])
|
| 327 |
+
out_fps = fps * output_frames / total_frames
|
| 328 |
+
|
| 329 |
+
# ffmpeg.input(os.path.join(output_combined_dir, '%07d.png'), framerate=out_fps).output(output_video_path, vcodec='h264_nvenc', pix_fmt='yuv420p').run()
|
| 330 |
+
|
| 331 |
+
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 332 |
+
# out = cv2.VideoWriter(output_video_path, fourcc, out_fps, (frame_width, frame_height))
|
| 333 |
+
# for i in range(output_frames):
|
| 334 |
+
# frame_path = os.path.join(output_combined_dir, f'{i:07d}.png')
|
| 335 |
+
# frame = cv2.imread(frame_path)
|
| 336 |
+
# out.write(frame)
|
| 337 |
+
# out.release()
|
| 338 |
+
|
| 339 |
+
image_files = [os.path.join(output_combined_dir, f'{i:07d}.png') for i in range(output_frames)]
|
| 340 |
+
clip = ImageSequenceClip(image_files, fps=out_fps)
|
| 341 |
+
clip.write_videofile(output_video_path, codec="libx264", fps=out_fps)
|
| 342 |
+
|
| 343 |
+
zip_folder(output_masks_dir, output_zip_path)
|
| 344 |
+
print("done")
|
| 345 |
+
return final_masked_frame, final_masked_frame, output_video_path, output_video_path, output_zip_path
|
| 346 |
+
|
| 347 |
def increment_ann_obj_id(ann_obj_id):
|
| 348 |
ann_obj_id += 1
|
| 349 |
return ann_obj_id
|
|
|
|
| 351 |
def drawing_board_get_input_first_frame(input_first_frame):
|
| 352 |
return input_first_frame
|
| 353 |
|
| 354 |
+
def process_video(queue, result_queue, session_id):
|
| 355 |
+
seg_tracker = None
|
| 356 |
+
click_stack = ({}, {})
|
| 357 |
+
frame_num = int(0)
|
| 358 |
+
ann_obj_id =int(0)
|
| 359 |
+
last_draw = None
|
| 360 |
+
while True:
|
| 361 |
+
task = queue.get()
|
| 362 |
+
if task["command"] == "exit":
|
| 363 |
+
print(f"Process for {session_id} exiting.")
|
| 364 |
+
break
|
| 365 |
+
elif task["command"] == "extract_video_info":
|
| 366 |
+
input_video = task["input_video"]
|
| 367 |
+
fps, total_frames, input_first_frame, drawing_board, output_video, output_mp4, output_mask = extract_video_info(input_video)
|
| 368 |
+
result_queue.put({"fps": fps, "total_frames": total_frames, "input_first_frame": input_first_frame, "drawing_board": drawing_board, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask})
|
| 369 |
+
elif task["command"] == "get_meta_from_video":
|
| 370 |
+
input_video = task["input_video"]
|
| 371 |
+
scale_slider = task["scale_slider"]
|
| 372 |
+
checkpoint = task["checkpoint"]
|
| 373 |
+
seg_tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id = get_meta_from_video(session_id, input_video, scale_slider, checkpoint)
|
| 374 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_per": frame_per, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask, "ann_obj_id": ann_obj_id})
|
| 375 |
+
elif task["command"] == "sam_stroke":
|
| 376 |
+
drawing_board = task["drawing_board"]
|
| 377 |
+
last_draw = task["last_draw"]
|
| 378 |
+
frame_num = task["frame_num"]
|
| 379 |
+
ann_obj_id = task["ann_obj_id"]
|
| 380 |
+
seg_tracker, input_first_frame, drawing_board, last_draw = sam_stroke(session_id, seg_tracker, drawing_board, last_draw, frame_num, ann_obj_id)
|
| 381 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "last_draw": last_draw})
|
| 382 |
+
elif task["command"] == "sam_click":
|
| 383 |
+
frame_num = task["frame_num"]
|
| 384 |
+
point_mode = task["point_mode"]
|
| 385 |
+
click_stack = task["click_stack"]
|
| 386 |
+
ann_obj_id = task["ann_obj_id"]
|
| 387 |
+
point = task["point"]
|
| 388 |
+
seg_tracker, input_first_frame, drawing_board, last_draw = sam_click(session_id, seg_tracker, frame_num, point_mode, click_stack, ann_obj_id, point)
|
| 389 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "last_draw": last_draw})
|
| 390 |
+
elif task["command"] == "increment_ann_obj_id":
|
| 391 |
+
ann_obj_id = task["ann_obj_id"]
|
| 392 |
+
ann_obj_id = increment_ann_obj_id(ann_obj_id)
|
| 393 |
+
result_queue.put({"ann_obj_id": ann_obj_id})
|
| 394 |
+
elif task["command"] == "drawing_board_get_input_first_frame":
|
| 395 |
+
input_first_frame = task["input_first_frame"]
|
| 396 |
+
input_first_frame = drawing_board_get_input_first_frame(input_first_frame)
|
| 397 |
+
result_queue.put({"input_first_frame": input_first_frame})
|
| 398 |
+
elif task["command"] == "reset":
|
| 399 |
+
seg_tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id = reset(seg_tracker)
|
| 400 |
+
result_queue.put({"click_stack": click_stack, "input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_per": frame_per, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask, "ann_obj_id": ann_obj_id})
|
| 401 |
+
elif task["command"] == "show_res_by_slider":
|
| 402 |
+
frame_per = task["frame_per"]
|
| 403 |
+
click_stack = task["click_stack"]
|
| 404 |
+
input_first_frame, drawing_board, frame_num = show_res_by_slider(session_id, frame_per, click_stack)
|
| 405 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_num": frame_num})
|
| 406 |
+
elif task["command"] == "tracking_objects":
|
| 407 |
+
frame_num = task["frame_num"]
|
| 408 |
+
input_video = task["input_video"]
|
| 409 |
+
input_first_frame, drawing_board, output_video, output_mp4, output_mask = tracking_objects(session_id, seg_tracker, frame_num, input_video)
|
| 410 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask})
|
| 411 |
+
else:
|
| 412 |
+
print(f"Unknown command {task['command']} for {session_id}")
|
| 413 |
+
result_queue.put("Unknown command")
|
| 414 |
+
|
| 415 |
+
def start_process(session_id):
|
| 416 |
+
if session_id not in user_processes:
|
| 417 |
+
queue = mp.Queue()
|
| 418 |
+
result_queue = mp.Queue()
|
| 419 |
+
process = mp.Process(target=process_video, args=(queue, result_queue, session_id))
|
| 420 |
+
process.start()
|
| 421 |
+
user_processes[session_id] = {
|
| 422 |
+
"process": process,
|
| 423 |
+
"queue": queue,
|
| 424 |
+
"result_queue": result_queue,
|
| 425 |
+
"last_active": datetime.datetime.now()
|
| 426 |
+
}
|
| 427 |
+
else:
|
| 428 |
+
user_processes[session_id]["last_active"] = datetime.datetime.now()
|
| 429 |
+
return user_processes[session_id]["queue"]
|
| 430 |
+
|
| 431 |
+
# def clean_up_processes(session_id, init_clean = False):
|
| 432 |
+
# now = datetime.datetime.now()
|
| 433 |
+
# to_remove = []
|
| 434 |
+
# for s_id, process_info in user_processes.items():
|
| 435 |
+
# if (now - process_info["last_active"] > PROCESS_TIMEOUT) or (s_id == session_id and init_clean):
|
| 436 |
+
# process_info["queue"].put({"command": "exit"})
|
| 437 |
+
# process_info["process"].terminate()
|
| 438 |
+
# process_info["process"].join()
|
| 439 |
+
# to_remove.append(s_id)
|
| 440 |
+
# for s_id in to_remove:
|
| 441 |
+
# del user_processes[s_id]
|
| 442 |
+
# print(f"Cleaned up process for session {s_id}.")
|
| 443 |
+
|
| 444 |
+
def monitor_and_cleanup_processes():
|
| 445 |
+
while True:
|
| 446 |
+
now = datetime.datetime.now()
|
| 447 |
+
to_remove = []
|
| 448 |
+
for session_id, process_info in user_processes.items():
|
| 449 |
+
if now - process_info["last_active"] > PROCESS_TIMEOUT:
|
| 450 |
+
process_info["queue"].put({"command": "exit"})
|
| 451 |
+
process_info["process"].terminate()
|
| 452 |
+
process_info["process"].join()
|
| 453 |
+
to_remove.append(session_id)
|
| 454 |
+
for session_id in to_remove:
|
| 455 |
+
del user_processes[session_id]
|
| 456 |
+
print(f"Automatically cleaned up process for session {session_id}.")
|
| 457 |
+
time.sleep(10)
|
| 458 |
|
| 459 |
def seg_track_app():
|
|
|
|
| 460 |
|
| 461 |
+
import gradio as gr
|
|
|
|
| 462 |
|
| 463 |
+
def extract_session_id_from_request(request: gr.Request):
|
| 464 |
+
session_id = hashlib.sha256(f'{request.client.host}:{request.client.port}'.encode('utf-8')).hexdigest()
|
| 465 |
+
# cookies = request.kwargs["headers"].get('cookie', '')
|
| 466 |
+
# session_id = None
|
| 467 |
+
# if '_gid=' in cookies:
|
| 468 |
+
# session_id = cookies.split('_gid=')[1].split(';')[0]
|
| 469 |
+
# else:
|
| 470 |
+
# session_id = str(uuid.uuid4())
|
| 471 |
+
print(f"session_id {session_id}")
|
| 472 |
+
return session_id
|
| 473 |
+
|
| 474 |
+
def handle_extract_video_info(session_id, input_video):
|
| 475 |
+
# clean_up_processes(session_id, init_clean=True)
|
| 476 |
+
if input_video == None:
|
| 477 |
+
return 0, 0, None, None, None, None, None
|
| 478 |
+
queue = start_process(session_id)
|
| 479 |
+
result_queue = user_processes[session_id]["result_queue"]
|
| 480 |
+
queue.put({"command": "extract_video_info", "input_video": input_video})
|
| 481 |
+
result = result_queue.get()
|
| 482 |
+
fps = result.get("fps")
|
| 483 |
+
total_frames = result.get("total_frames")
|
| 484 |
+
input_first_frame = result.get("input_first_frame")
|
| 485 |
+
drawing_board = result.get("drawing_board")
|
| 486 |
+
output_video = result.get("output_video")
|
| 487 |
+
output_mp4 = result.get("output_mp4")
|
| 488 |
+
output_mask = result.get("output_mask")
|
| 489 |
scale_slider = gr.Slider.update(minimum=1.0,
|
| 490 |
maximum=fps,
|
| 491 |
step=1.0,
|
|
|
|
| 494 |
maximum= total_frames / fps,
|
| 495 |
step=1.0/fps,
|
| 496 |
value=0.0,)
|
| 497 |
+
return scale_slider, frame_per, input_first_frame, drawing_board, output_video, output_mp4, output_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
|
| 499 |
+
def handle_get_meta_from_video(session_id, input_video, scale_slider, checkpoint):
|
| 500 |
+
# clean_up_processes(session_id)
|
| 501 |
+
queue = start_process(session_id)
|
| 502 |
+
result_queue = user_processes[session_id]["result_queue"]
|
| 503 |
+
queue.put({"command": "get_meta_from_video", "input_video": input_video, "scale_slider": scale_slider, "checkpoint": checkpoint})
|
| 504 |
+
result = result_queue.get()
|
| 505 |
+
input_first_frame = result.get("input_first_frame")
|
| 506 |
+
drawing_board = result.get("drawing_board")
|
| 507 |
+
(fps, frame_interval, total_frames) = result.get("frame_per")
|
| 508 |
+
output_video = result.get("output_video")
|
| 509 |
+
output_mp4 = result.get("output_mp4")
|
| 510 |
+
output_mask = result.get("output_mask")
|
| 511 |
+
ann_obj_id = result.get("ann_obj_id")
|
| 512 |
frame_per = gr.Slider.update(minimum= 0.0,
|
| 513 |
maximum= total_frames / fps,
|
| 514 |
step=frame_interval / fps,
|
| 515 |
value=0.0,)
|
| 516 |
+
return input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
| 517 |
+
|
| 518 |
+
def handle_sam_stroke(session_id, drawing_board, last_draw, frame_num, ann_obj_id):
|
| 519 |
+
# clean_up_processes(session_id)
|
| 520 |
+
queue = start_process(session_id)
|
| 521 |
+
result_queue = user_processes[session_id]["result_queue"]
|
| 522 |
+
queue.put({"command": "sam_stroke", "drawing_board": drawing_board, "last_draw": last_draw, "frame_num": frame_num, "ann_obj_id": ann_obj_id})
|
| 523 |
+
result = result_queue.get()
|
| 524 |
+
input_first_frame = result.get("input_first_frame")
|
| 525 |
+
drawing_board = result.get("drawing_board")
|
| 526 |
+
last_draw = result.get("last_draw")
|
| 527 |
+
return input_first_frame, drawing_board, last_draw
|
| 528 |
+
|
| 529 |
+
def handle_sam_click(session_id, frame_num, point_mode, click_stack, ann_obj_id, evt: gr.SelectData):
|
| 530 |
+
# clean_up_processes(session_id)
|
| 531 |
+
queue = start_process(session_id)
|
| 532 |
+
result_queue = user_processes[session_id]["result_queue"]
|
| 533 |
+
point = np.array([[evt.index[0], evt.index[1]]], dtype=np.float32)
|
| 534 |
+
queue.put({"command": "sam_click", "frame_num": frame_num, "point_mode": point_mode, "click_stack": click_stack, "ann_obj_id": ann_obj_id, "point": point})
|
| 535 |
+
result = result_queue.get()
|
| 536 |
+
input_first_frame = result.get("input_first_frame")
|
| 537 |
+
drawing_board = result.get("drawing_board")
|
| 538 |
+
last_draw = result.get("last_draw")
|
| 539 |
+
return input_first_frame, drawing_board, last_draw
|
| 540 |
+
|
| 541 |
+
def handle_increment_ann_obj_id(session_id, ann_obj_id):
|
| 542 |
+
# clean_up_processes(session_id)
|
| 543 |
+
queue = start_process(session_id)
|
| 544 |
+
result_queue = user_processes[session_id]["result_queue"]
|
| 545 |
+
queue.put({"command": "increment_ann_obj_id", "ann_obj_id": ann_obj_id})
|
| 546 |
+
result = result_queue.get()
|
| 547 |
+
ann_obj_id = result.get("ann_obj_id")
|
| 548 |
+
return ann_obj_id
|
| 549 |
+
|
| 550 |
+
def handle_drawing_board_get_input_first_frame(session_id, input_first_frame):
|
| 551 |
+
# clean_up_processes(session_id)
|
| 552 |
+
queue = start_process(session_id)
|
| 553 |
+
result_queue = user_processes[session_id]["result_queue"]
|
| 554 |
+
queue.put({"command": "drawing_board_get_input_first_frame", "input_first_frame": input_first_frame})
|
| 555 |
+
result = result_queue.get()
|
| 556 |
+
input_first_frame = result.get("input_first_frame")
|
| 557 |
+
return input_first_frame
|
| 558 |
+
|
| 559 |
+
def handle_reset(session_id):
|
| 560 |
+
# clean_up_processes(session_id)
|
| 561 |
+
queue = start_process(session_id)
|
| 562 |
+
result_queue = user_processes[session_id]["result_queue"]
|
| 563 |
+
queue.put({"command": "reset"})
|
| 564 |
+
result = result_queue.get()
|
| 565 |
+
click_stack = result.get("click_stack")
|
| 566 |
+
input_first_frame = result.get("input_first_frame")
|
| 567 |
+
drawing_board = result.get("drawing_board")
|
| 568 |
+
frame_per = result.get("frame_per")
|
| 569 |
+
output_video = result.get("output_video")
|
| 570 |
+
output_mp4 = result.get("output_mp4")
|
| 571 |
+
output_mask = result.get("output_mask")
|
| 572 |
+
ann_obj_id = result.get("ann_obj_id")
|
| 573 |
+
return click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
| 574 |
+
|
| 575 |
+
def handle_show_res_by_slider(session_id, frame_per, click_stack):
|
| 576 |
+
# clean_up_processes(session_id)
|
| 577 |
+
queue = start_process(session_id)
|
| 578 |
+
result_queue = user_processes[session_id]["result_queue"]
|
| 579 |
+
queue.put({"command": "show_res_by_slider", "frame_per": frame_per, "click_stack": click_stack})
|
| 580 |
+
result = result_queue.get()
|
| 581 |
+
input_first_frame = result.get("input_first_frame")
|
| 582 |
+
drawing_board = result.get("drawing_board")
|
| 583 |
+
frame_num = result.get("frame_num")
|
| 584 |
+
return input_first_frame, drawing_board, frame_num
|
| 585 |
+
|
| 586 |
+
def handle_tracking_objects(session_id, frame_num, input_video):
|
| 587 |
+
# clean_up_processes(session_id)
|
| 588 |
+
queue = start_process(session_id)
|
| 589 |
+
result_queue = user_processes[session_id]["result_queue"]
|
| 590 |
+
queue.put({"command": "tracking_objects", "frame_num": frame_num, "input_video": input_video})
|
| 591 |
+
result = result_queue.get()
|
| 592 |
+
input_first_frame = result.get("input_first_frame")
|
| 593 |
+
drawing_board = result.get("drawing_board")
|
| 594 |
+
output_video = result.get("output_video")
|
| 595 |
+
output_mp4 = result.get("output_mp4")
|
| 596 |
+
output_mask = result.get("output_mask")
|
| 597 |
+
return input_first_frame, drawing_board, output_video, output_mp4, output_mask
|
| 598 |
|
| 599 |
##########################################################
|
| 600 |
###################### Front-end ########################
|
|
|
|
| 608 |
"""
|
| 609 |
|
| 610 |
app = gr.Blocks(css=css)
|
|
|
|
| 611 |
with app:
|
| 612 |
+
session_id = gr.State()
|
| 613 |
+
app.load(extract_session_id_from_request, None, session_id)
|
| 614 |
gr.Markdown(
|
| 615 |
'''
|
| 616 |
<div style="text-align:center; margin-bottom:20px;">
|
|
|
|
| 673 |
'''
|
| 674 |
)
|
| 675 |
|
| 676 |
+
click_stack = gr.State(({}, {}))
|
| 677 |
frame_num = gr.State(value=(int(0)))
|
| 678 |
ann_obj_id = gr.State(value=(int(0)))
|
| 679 |
last_draw = gr.State(None)
|
|
|
|
| 683 |
with gr.Row():
|
| 684 |
tab_video_input = gr.Tab(label="Video input")
|
| 685 |
with tab_video_input:
|
| 686 |
+
input_video = gr.Video(label='Input video', type=["mp4", "mov", "avi"], elem_id="input_output_video")
|
| 687 |
with gr.Row():
|
| 688 |
checkpoint = gr.Dropdown(label="Model Size", choices=["tiny", "small", "base-plus", "large"], value="tiny")
|
| 689 |
scale_slider = gr.Slider(
|
|
|
|
| 708 |
|
| 709 |
tab_click = gr.Tab(label="Point Prompt")
|
| 710 |
with tab_click:
|
| 711 |
+
input_first_frame = gr.Image(label='Segment result of first frame',interactive=True).style(height=550)
|
| 712 |
with gr.Row():
|
| 713 |
point_mode = gr.Radio(
|
| 714 |
choices=["Positive", "Negative"],
|
|
|
|
| 781 |
|
| 782 |
# listen to the preprocess button click to get the first frame of video with scaling
|
| 783 |
preprocess_button.click(
|
| 784 |
+
fn=handle_get_meta_from_video,
|
| 785 |
inputs=[
|
| 786 |
+
session_id,
|
| 787 |
input_video,
|
| 788 |
scale_slider,
|
| 789 |
+
checkpoint
|
| 790 |
],
|
| 791 |
outputs=[
|
| 792 |
+
input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
| 793 |
]
|
| 794 |
)
|
| 795 |
|
| 796 |
frame_per.release(
|
| 797 |
+
fn=handle_show_res_by_slider,
|
| 798 |
inputs=[
|
| 799 |
+
session_id, frame_per, click_stack
|
| 800 |
],
|
| 801 |
outputs=[
|
| 802 |
input_first_frame, drawing_board, frame_num
|
|
|
|
| 805 |
|
| 806 |
# Interactively modify the mask acc click
|
| 807 |
input_first_frame.select(
|
| 808 |
+
fn=handle_sam_click,
|
| 809 |
inputs=[
|
| 810 |
+
session_id, frame_num, point_mode, click_stack, ann_obj_id
|
| 811 |
],
|
| 812 |
outputs=[
|
| 813 |
input_first_frame, drawing_board, click_stack
|
|
|
|
| 816 |
|
| 817 |
# Track object in video
|
| 818 |
track_for_video.click(
|
| 819 |
+
fn=handle_tracking_objects,
|
| 820 |
inputs=[
|
| 821 |
+
session_id,
|
|
|
|
| 822 |
frame_num,
|
| 823 |
input_video,
|
| 824 |
],
|
|
|
|
| 832 |
)
|
| 833 |
|
| 834 |
reset_button.click(
|
| 835 |
+
fn=handle_reset,
|
| 836 |
+
inputs=[session_id],
|
| 837 |
outputs=[
|
| 838 |
click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
| 839 |
]
|
| 840 |
)
|
| 841 |
|
| 842 |
new_object_button.click(
|
| 843 |
+
fn=handle_increment_ann_obj_id,
|
| 844 |
inputs=[
|
| 845 |
+
session_id, ann_obj_id
|
| 846 |
],
|
| 847 |
outputs=[
|
| 848 |
ann_obj_id
|
|
|
|
| 850 |
)
|
| 851 |
|
| 852 |
tab_stroke.select(
|
| 853 |
+
fn=handle_drawing_board_get_input_first_frame,
|
| 854 |
+
inputs=[session_id, input_first_frame],
|
| 855 |
outputs=[drawing_board,],
|
| 856 |
)
|
| 857 |
|
| 858 |
seg_acc_stroke.click(
|
| 859 |
+
fn=handle_sam_stroke,
|
| 860 |
inputs=[
|
| 861 |
+
session_id, drawing_board, last_draw, frame_num, ann_obj_id
|
| 862 |
],
|
| 863 |
outputs=[
|
| 864 |
+
input_first_frame, drawing_board, last_draw
|
| 865 |
]
|
| 866 |
)
|
| 867 |
|
| 868 |
input_video.change(
|
| 869 |
+
fn=handle_extract_video_info,
|
| 870 |
+
inputs=[session_id, input_video],
|
| 871 |
+
outputs=[scale_slider, frame_per, input_first_frame, drawing_board, output_video, output_mp4, output_mask]
|
| 872 |
)
|
| 873 |
|
| 874 |
app.queue(concurrency_count=1)
|
| 875 |
+
app.launch(debug=True, enable_queue=True, share=False)
|
| 876 |
|
| 877 |
if __name__ == "__main__":
|
| 878 |
+
mp.set_start_method("spawn")
|
| 879 |
+
monitor_thread = threading.Thread(target=monitor_and_cleanup_processes)
|
| 880 |
+
monitor_thread.daemon = True
|
| 881 |
+
monitor_thread.start()
|
| 882 |
seg_track_app()
|