Upload 4 files
Browse files- Dockerfile +11 -0
- main.py +367 -0
- proxy_server.py +0 -0
- requirements.txt +28 -0
Dockerfile
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR $HOME/app
|
| 4 |
+
|
| 5 |
+
COPY . .
|
| 6 |
+
|
| 7 |
+
RUN pip install -r requirements.txt
|
| 8 |
+
|
| 9 |
+
VOLUME /data
|
| 10 |
+
|
| 11 |
+
CMD ["python", "-m", "main.py"]
|
main.py
ADDED
|
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import click
|
| 2 |
+
import subprocess, traceback, json
|
| 3 |
+
import os, sys
|
| 4 |
+
import random
|
| 5 |
+
import importlib
|
| 6 |
+
|
| 7 |
+
def run_ollama_serve():
|
| 8 |
+
try:
|
| 9 |
+
command = ["ollama", "serve"]
|
| 10 |
+
|
| 11 |
+
with open(os.devnull, "w") as devnull:
|
| 12 |
+
process = subprocess.Popen(command, stdout=devnull, stderr=devnull)
|
| 13 |
+
except Exception as e:
|
| 14 |
+
print(
|
| 15 |
+
f"""
|
| 16 |
+
LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve`
|
| 17 |
+
"""
|
| 18 |
+
) # noqa
|
| 19 |
+
|
| 20 |
+
def is_port_in_use(port):
|
| 21 |
+
import socket
|
| 22 |
+
|
| 23 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
| 24 |
+
return s.connect_ex(("localhost", port)) == 0
|
| 25 |
+
|
| 26 |
+
def run_server(
|
| 27 |
+
host = "0.0.0.0",
|
| 28 |
+
port = 8000,
|
| 29 |
+
api_base = None,
|
| 30 |
+
api_version = "2023-07-01-preview",
|
| 31 |
+
model = None,
|
| 32 |
+
alias = None,
|
| 33 |
+
add_key = None,
|
| 34 |
+
headers = None,
|
| 35 |
+
save = False,
|
| 36 |
+
debug = False,
|
| 37 |
+
detailed_debug = False,
|
| 38 |
+
temperature = 0.0,
|
| 39 |
+
max_tokens = 1000,
|
| 40 |
+
request_timeout = 10,
|
| 41 |
+
drop_params = True,
|
| 42 |
+
add_function_to_prompt = True,
|
| 43 |
+
config = None,
|
| 44 |
+
max_budget = 100,
|
| 45 |
+
telemetry = False,
|
| 46 |
+
test = False,
|
| 47 |
+
local = False,
|
| 48 |
+
num_workers = 1,
|
| 49 |
+
test_async = False,
|
| 50 |
+
num_requests = 1,
|
| 51 |
+
use_queue = False,
|
| 52 |
+
health = False,
|
| 53 |
+
version = False,
|
| 54 |
+
):
|
| 55 |
+
global feature_telemetry
|
| 56 |
+
args = locals()
|
| 57 |
+
if local:
|
| 58 |
+
from .proxy_server import app, save_worker_config, usage_telemetry
|
| 59 |
+
else:
|
| 60 |
+
try:
|
| 61 |
+
from .litellm.proxy.proxy_server import app, save_worker_config, usage_telemetry
|
| 62 |
+
except ImportError as e:
|
| 63 |
+
if "litellm[proxy]" in str(e):
|
| 64 |
+
# user is missing a proxy dependency, ask them to pip install litellm[proxy]
|
| 65 |
+
raise e
|
| 66 |
+
else:
|
| 67 |
+
# this is just a local/relative import error, user git cloned litellm
|
| 68 |
+
from .proxy_server import app, save_worker_config, usage_telemetry
|
| 69 |
+
feature_telemetry = usage_telemetry
|
| 70 |
+
if version == True:
|
| 71 |
+
pkg_version = importlib.metadata.version("litellm")
|
| 72 |
+
click.echo(f"\nLiteLLM: Current Version = {pkg_version}\n")
|
| 73 |
+
return
|
| 74 |
+
if model and "ollama" in model and api_base is None:
|
| 75 |
+
run_ollama_serve()
|
| 76 |
+
if test_async is True:
|
| 77 |
+
import requests, concurrent, time
|
| 78 |
+
|
| 79 |
+
api_base = f"http://{host}:{port}"
|
| 80 |
+
|
| 81 |
+
def _make_openai_completion():
|
| 82 |
+
data = {
|
| 83 |
+
"model": "gpt-3.5-turbo",
|
| 84 |
+
"messages": [
|
| 85 |
+
{"role": "user", "content": "Write a short poem about the moon"}
|
| 86 |
+
],
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
response = requests.post("http://0.0.0.0:8000/queue/request", json=data)
|
| 90 |
+
|
| 91 |
+
response = response.json()
|
| 92 |
+
|
| 93 |
+
while True:
|
| 94 |
+
try:
|
| 95 |
+
url = response["url"]
|
| 96 |
+
polling_url = f"{api_base}{url}"
|
| 97 |
+
polling_response = requests.get(polling_url)
|
| 98 |
+
polling_response = polling_response.json()
|
| 99 |
+
print("\n RESPONSE FROM POLLING JOB", polling_response)
|
| 100 |
+
status = polling_response["status"]
|
| 101 |
+
if status == "finished":
|
| 102 |
+
llm_response = polling_response["result"]
|
| 103 |
+
break
|
| 104 |
+
print(
|
| 105 |
+
f"POLLING JOB{polling_url}\nSTATUS: {status}, \n Response {polling_response}"
|
| 106 |
+
) # noqa
|
| 107 |
+
time.sleep(0.5)
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print("got exception in polling", e)
|
| 110 |
+
break
|
| 111 |
+
|
| 112 |
+
# Number of concurrent calls (you can adjust this)
|
| 113 |
+
concurrent_calls = num_requests
|
| 114 |
+
|
| 115 |
+
# List to store the futures of concurrent calls
|
| 116 |
+
futures = []
|
| 117 |
+
start_time = time.time()
|
| 118 |
+
# Make concurrent calls
|
| 119 |
+
with concurrent.futures.ThreadPoolExecutor(
|
| 120 |
+
max_workers=concurrent_calls
|
| 121 |
+
) as executor:
|
| 122 |
+
for _ in range(concurrent_calls):
|
| 123 |
+
futures.append(executor.submit(_make_openai_completion))
|
| 124 |
+
|
| 125 |
+
# Wait for all futures to complete
|
| 126 |
+
concurrent.futures.wait(futures)
|
| 127 |
+
|
| 128 |
+
# Summarize the results
|
| 129 |
+
successful_calls = 0
|
| 130 |
+
failed_calls = 0
|
| 131 |
+
|
| 132 |
+
for future in futures:
|
| 133 |
+
if future.done():
|
| 134 |
+
if future.result() is not None:
|
| 135 |
+
successful_calls += 1
|
| 136 |
+
else:
|
| 137 |
+
failed_calls += 1
|
| 138 |
+
end_time = time.time()
|
| 139 |
+
print(f"Elapsed Time: {end_time-start_time}")
|
| 140 |
+
print(f"Load test Summary:")
|
| 141 |
+
print(f"Total Requests: {concurrent_calls}")
|
| 142 |
+
print(f"Successful Calls: {successful_calls}")
|
| 143 |
+
print(f"Failed Calls: {failed_calls}")
|
| 144 |
+
return
|
| 145 |
+
if health != False:
|
| 146 |
+
import requests
|
| 147 |
+
|
| 148 |
+
print("\nLiteLLM: Health Testing models in config")
|
| 149 |
+
response = requests.get(url=f"http://{host}:{port}/health")
|
| 150 |
+
print(json.dumps(response.json(), indent=4))
|
| 151 |
+
return
|
| 152 |
+
if test != False:
|
| 153 |
+
request_model = model or "gpt-3.5-turbo"
|
| 154 |
+
click.echo(
|
| 155 |
+
f"\nLiteLLM: Making a test ChatCompletions request to your proxy. Model={request_model}"
|
| 156 |
+
)
|
| 157 |
+
import openai
|
| 158 |
+
|
| 159 |
+
if test == True: # flag value set
|
| 160 |
+
api_base = f"http://{host}:{port}"
|
| 161 |
+
else:
|
| 162 |
+
api_base = test
|
| 163 |
+
client = openai.OpenAI(api_key="My API Key", base_url=api_base)
|
| 164 |
+
|
| 165 |
+
response = client.chat.completions.create(
|
| 166 |
+
model=request_model,
|
| 167 |
+
messages=[
|
| 168 |
+
{
|
| 169 |
+
"role": "user",
|
| 170 |
+
"content": "this is a test request, write a short poem",
|
| 171 |
+
}
|
| 172 |
+
],
|
| 173 |
+
max_tokens=256,
|
| 174 |
+
)
|
| 175 |
+
click.echo(f"\nLiteLLM: response from proxy {response}")
|
| 176 |
+
|
| 177 |
+
print(
|
| 178 |
+
f"\n LiteLLM: Making a test ChatCompletions + streaming request to proxy. Model={request_model}"
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
response = client.chat.completions.create(
|
| 182 |
+
model=request_model,
|
| 183 |
+
messages=[
|
| 184 |
+
{
|
| 185 |
+
"role": "user",
|
| 186 |
+
"content": "this is a test request, write a short poem",
|
| 187 |
+
}
|
| 188 |
+
],
|
| 189 |
+
stream=True,
|
| 190 |
+
)
|
| 191 |
+
for chunk in response:
|
| 192 |
+
click.echo(f"LiteLLM: streaming response from proxy {chunk}")
|
| 193 |
+
print("\n making completion request to proxy")
|
| 194 |
+
response = client.completions.create(
|
| 195 |
+
model=request_model, prompt="this is a test request, write a short poem"
|
| 196 |
+
)
|
| 197 |
+
print(response)
|
| 198 |
+
|
| 199 |
+
return
|
| 200 |
+
else:
|
| 201 |
+
if headers:
|
| 202 |
+
headers = json.loads(headers)
|
| 203 |
+
save_worker_config(
|
| 204 |
+
model=model,
|
| 205 |
+
alias=alias,
|
| 206 |
+
api_base=api_base,
|
| 207 |
+
api_version=api_version,
|
| 208 |
+
debug=debug,
|
| 209 |
+
detailed_debug=detailed_debug,
|
| 210 |
+
temperature=temperature,
|
| 211 |
+
max_tokens=max_tokens,
|
| 212 |
+
request_timeout=request_timeout,
|
| 213 |
+
max_budget=max_budget,
|
| 214 |
+
telemetry=telemetry,
|
| 215 |
+
drop_params=drop_params,
|
| 216 |
+
add_function_to_prompt=add_function_to_prompt,
|
| 217 |
+
headers=headers,
|
| 218 |
+
save=save,
|
| 219 |
+
config=config,
|
| 220 |
+
use_queue=use_queue,
|
| 221 |
+
)
|
| 222 |
+
try:
|
| 223 |
+
import uvicorn
|
| 224 |
+
|
| 225 |
+
if os.name == "nt":
|
| 226 |
+
pass
|
| 227 |
+
else:
|
| 228 |
+
import gunicorn.app.base
|
| 229 |
+
except:
|
| 230 |
+
raise ImportError(
|
| 231 |
+
"Uvicorn, gunicorn needs to be imported. Run - `pip 'litellm[proxy]'`"
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
if config is not None:
|
| 235 |
+
"""
|
| 236 |
+
Allow user to pass in db url via config
|
| 237 |
+
|
| 238 |
+
read from there and save it to os.env['DATABASE_URL']
|
| 239 |
+
"""
|
| 240 |
+
try:
|
| 241 |
+
import yaml
|
| 242 |
+
except:
|
| 243 |
+
raise ImportError(
|
| 244 |
+
"yaml needs to be imported. Run - `pip install 'litellm[proxy]'`"
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
if os.path.exists(config):
|
| 248 |
+
with open(config, "r") as config_file:
|
| 249 |
+
config = yaml.safe_load(config_file)
|
| 250 |
+
general_settings = config.get("general_settings", {})
|
| 251 |
+
database_url = general_settings.get("database_url", None)
|
| 252 |
+
if database_url and database_url.startswith("os.environ/"):
|
| 253 |
+
original_dir = os.getcwd()
|
| 254 |
+
# set the working directory to where this script is
|
| 255 |
+
sys.path.insert(
|
| 256 |
+
0, os.path.abspath("../..")
|
| 257 |
+
) # Adds the parent directory to the system path - for litellm local dev
|
| 258 |
+
import litellm
|
| 259 |
+
|
| 260 |
+
database_url = litellm.get_secret(database_url)
|
| 261 |
+
os.chdir(original_dir)
|
| 262 |
+
if database_url is not None and isinstance(database_url, str):
|
| 263 |
+
os.environ["DATABASE_URL"] = database_url
|
| 264 |
+
|
| 265 |
+
if os.getenv("DATABASE_URL", None) is not None:
|
| 266 |
+
try:
|
| 267 |
+
subprocess.run(["prisma"], capture_output=True)
|
| 268 |
+
is_prisma_runnable = True
|
| 269 |
+
except FileNotFoundError:
|
| 270 |
+
is_prisma_runnable = False
|
| 271 |
+
|
| 272 |
+
if is_prisma_runnable:
|
| 273 |
+
# run prisma db push, before starting server
|
| 274 |
+
# Save the current working directory
|
| 275 |
+
original_dir = os.getcwd()
|
| 276 |
+
# set the working directory to where this script is
|
| 277 |
+
abspath = os.path.abspath(__file__)
|
| 278 |
+
dname = os.path.dirname(abspath)
|
| 279 |
+
os.chdir(dname)
|
| 280 |
+
try:
|
| 281 |
+
subprocess.run(
|
| 282 |
+
["prisma", "db", "push", "--accept-data-loss"]
|
| 283 |
+
) # this looks like a weird edge case when prisma just wont start on render. we need to have the --accept-data-loss
|
| 284 |
+
finally:
|
| 285 |
+
os.chdir(original_dir)
|
| 286 |
+
else:
|
| 287 |
+
print(
|
| 288 |
+
f"Unable to connect to DB. DATABASE_URL found in environment, but prisma package not found."
|
| 289 |
+
)
|
| 290 |
+
if port == 8000 and is_port_in_use(port):
|
| 291 |
+
port = random.randint(1024, 49152)
|
| 292 |
+
from litellm.proxy.proxy_server import app
|
| 293 |
+
|
| 294 |
+
uvicorn.run(app, host=host, port=port) # run uvicorn
|
| 295 |
+
# if os.name == "nt":
|
| 296 |
+
# else:
|
| 297 |
+
# import gunicorn.app.base
|
| 298 |
+
|
| 299 |
+
# # Gunicorn Application Class
|
| 300 |
+
# class StandaloneApplication(gunicorn.app.base.BaseApplication):
|
| 301 |
+
# def __init__(self, app, options=None):
|
| 302 |
+
# self.options = options or {} # gunicorn options
|
| 303 |
+
# self.application = app # FastAPI app
|
| 304 |
+
# super().__init__()
|
| 305 |
+
|
| 306 |
+
# _endpoint_str = (
|
| 307 |
+
# f"curl --location 'http://0.0.0.0:{port}/chat/completions' \\"
|
| 308 |
+
# )
|
| 309 |
+
# curl_command = (
|
| 310 |
+
# _endpoint_str
|
| 311 |
+
# + """
|
| 312 |
+
# --header 'Content-Type: application/json' \\
|
| 313 |
+
# --data ' {
|
| 314 |
+
# "model": "gpt-3.5-turbo",
|
| 315 |
+
# "messages": [
|
| 316 |
+
# {
|
| 317 |
+
# "role": "user",
|
| 318 |
+
# "content": "what llm are you"
|
| 319 |
+
# }
|
| 320 |
+
# ]
|
| 321 |
+
# }'
|
| 322 |
+
# \n
|
| 323 |
+
# """
|
| 324 |
+
# )
|
| 325 |
+
# print() # noqa
|
| 326 |
+
# print( # noqa
|
| 327 |
+
# f'\033[1;34mLiteLLM: Test your local proxy with: "litellm --test" This runs an openai.ChatCompletion request to your proxy [In a new terminal tab]\033[0m\n'
|
| 328 |
+
# )
|
| 329 |
+
# print( # noqa
|
| 330 |
+
# f"\033[1;34mLiteLLM: Curl Command Test for your local proxy\n {curl_command} \033[0m\n"
|
| 331 |
+
# )
|
| 332 |
+
# print(
|
| 333 |
+
# "\033[1;34mDocs: https://docs.litellm.ai/docs/simple_proxy\033[0m\n"
|
| 334 |
+
# ) # noqa
|
| 335 |
+
# print( # noqa
|
| 336 |
+
# f"\033[1;34mSee all Router/Swagger docs on http://0.0.0.0:{port} \033[0m\n"
|
| 337 |
+
# ) # noqa
|
| 338 |
+
|
| 339 |
+
# def load_config(self):
|
| 340 |
+
# # note: This Loads the gunicorn config - has nothing to do with LiteLLM Proxy config
|
| 341 |
+
# config = {
|
| 342 |
+
# key: value
|
| 343 |
+
# for key, value in self.options.items()
|
| 344 |
+
# if key in self.cfg.settings and value is not None
|
| 345 |
+
# }
|
| 346 |
+
# for key, value in config.items():
|
| 347 |
+
# self.cfg.set(key.lower(), value)
|
| 348 |
+
|
| 349 |
+
# def load(self):
|
| 350 |
+
# # gunicorn app function
|
| 351 |
+
# return self.application
|
| 352 |
+
|
| 353 |
+
# gunicorn_options = {
|
| 354 |
+
# "bind": f"{host}:{port}",
|
| 355 |
+
# "workers": num_workers, # default is 1
|
| 356 |
+
# "worker_class": "uvicorn.workers.UvicornWorker",
|
| 357 |
+
# "preload": True, # Add the preload flag,
|
| 358 |
+
# "accesslog": "-", # Log to stdout
|
| 359 |
+
# "access_log_format": '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s',
|
| 360 |
+
# }
|
| 361 |
+
# StandaloneApplication(
|
| 362 |
+
# app=app, options=gunicorn_options
|
| 363 |
+
# ).run() # Run gunicorn
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
if __name__ == "__main__":
|
| 367 |
+
run_server()
|
proxy_server.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# LITELLM PROXY DEPENDENCIES #
|
| 2 |
+
anyio==4.2.0 # openai + http req.
|
| 3 |
+
openai>=1.0.0 # openai req.
|
| 4 |
+
fastapi # server dep
|
| 5 |
+
pydantic>=2.5 # openai req.
|
| 6 |
+
backoff==2.2.1 # server dep
|
| 7 |
+
pyyaml==6.0 # server dep
|
| 8 |
+
uvicorn==0.22.0 # server dep
|
| 9 |
+
gunicorn==21.2.0 # server dep
|
| 10 |
+
boto3==1.28.58 # aws bedrock/sagemaker calls
|
| 11 |
+
redis==4.6.0 # caching
|
| 12 |
+
prisma==0.11.0 # for db
|
| 13 |
+
mangum==0.17.0 # for aws lambda functions
|
| 14 |
+
google-generativeai==0.1.0 # for vertex ai calls
|
| 15 |
+
async_generator==1.10.0 # for async ollama calls
|
| 16 |
+
traceloop-sdk==0.5.3 # for open telemetry logging
|
| 17 |
+
langfuse>=2.0.0 # for langfuse self-hosted logging
|
| 18 |
+
orjson==3.9.7 # fast /embedding responses
|
| 19 |
+
### LITELLM PACKAGE DEPENDENCIES
|
| 20 |
+
python-dotenv>=0.2.0 # for env
|
| 21 |
+
tiktoken>=0.4.0 # for calculating usage
|
| 22 |
+
importlib-metadata>=6.8.0 # for random utils
|
| 23 |
+
tokenizers==0.14.0 # for calculating usage
|
| 24 |
+
click==8.1.7 # for proxy cli
|
| 25 |
+
jinja2==3.1.2 # for prompt templates
|
| 26 |
+
certifi>=2023.7.22 # [TODO] clean up
|
| 27 |
+
aiohttp==3.9.0 # for network calls
|
| 28 |
+
####
|