| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						from typing import Any, Dict, Optional | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from diffusers.utils import USE_PEFT_BACKEND | 
					
					
						
						| 
							 | 
						from diffusers.utils.torch_utils import maybe_allow_in_graph | 
					
					
						
						| 
							 | 
						from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | 
					
					
						
						| 
							 | 
						from diffusers.models.attention_processor import Attention | 
					
					
						
						| 
							 | 
						from diffusers.models.embeddings import SinusoidalPositionalEmbedding | 
					
					
						
						| 
							 | 
						from diffusers.models.lora import LoRACompatibleLinear | 
					
					
						
						| 
							 | 
						from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _chunked_feed_forward( | 
					
					
						
						| 
							 | 
						    ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if hidden_states.shape[chunk_dim] % chunk_size != 0: | 
					
					
						
						| 
							 | 
						        raise ValueError( | 
					
					
						
						| 
							 | 
						            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    num_chunks = hidden_states.shape[chunk_dim] // chunk_size | 
					
					
						
						| 
							 | 
						    if lora_scale is None: | 
					
					
						
						| 
							 | 
						        ff_output = torch.cat( | 
					
					
						
						| 
							 | 
						            [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | 
					
					
						
						| 
							 | 
						            dim=chunk_dim, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        ff_output = torch.cat( | 
					
					
						
						| 
							 | 
						            [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | 
					
					
						
						| 
							 | 
						            dim=chunk_dim, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return ff_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@maybe_allow_in_graph | 
					
					
						
						| 
							 | 
						class GatedSelfAttentionDense(nn.Module): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    A gated self-attention dense layer that combines visual features and object features. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        query_dim (`int`): The number of channels in the query. | 
					
					
						
						| 
							 | 
						        context_dim (`int`): The number of channels in the context. | 
					
					
						
						| 
							 | 
						        n_heads (`int`): The number of heads to use for attention. | 
					
					
						
						| 
							 | 
						        d_head (`int`): The number of channels in each head. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.linear = nn.Linear(context_dim, query_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | 
					
					
						
						| 
							 | 
						        self.ff = FeedForward(query_dim, activation_fn="geglu") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.norm1 = nn.LayerNorm(query_dim) | 
					
					
						
						| 
							 | 
						        self.norm2 = nn.LayerNorm(query_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | 
					
					
						
						| 
							 | 
						        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.enabled = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        if not self.enabled: | 
					
					
						
						| 
							 | 
						            return x | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        n_visual = x.shape[1] | 
					
					
						
						| 
							 | 
						        objs = self.linear(objs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | 
					
					
						
						| 
							 | 
						        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return x | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@maybe_allow_in_graph | 
					
					
						
						| 
							 | 
						class BasicTransformerBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    A basic Transformer block. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        dim (`int`): The number of channels in the input and output. | 
					
					
						
						| 
							 | 
						        num_attention_heads (`int`): The number of heads to use for multi-head attention. | 
					
					
						
						| 
							 | 
						        attention_head_dim (`int`): The number of channels in each head. | 
					
					
						
						| 
							 | 
						        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | 
					
					
						
						| 
							 | 
						        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | 
					
					
						
						| 
							 | 
						        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | 
					
					
						
						| 
							 | 
						        num_embeds_ada_norm (: | 
					
					
						
						| 
							 | 
						            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | 
					
					
						
						| 
							 | 
						        attention_bias (: | 
					
					
						
						| 
							 | 
						            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | 
					
					
						
						| 
							 | 
						        only_cross_attention (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether to use only cross-attention layers. In this case two cross attention layers are used. | 
					
					
						
						| 
							 | 
						        double_self_attention (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether to use two self-attention layers. In this case no cross attention layers are used. | 
					
					
						
						| 
							 | 
						        upcast_attention (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether to upcast the attention computation to float32. This is useful for mixed precision training. | 
					
					
						
						| 
							 | 
						        norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether to use learnable elementwise affine parameters for normalization. | 
					
					
						
						| 
							 | 
						        norm_type (`str`, *optional*, defaults to `"layer_norm"`): | 
					
					
						
						| 
							 | 
						            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | 
					
					
						
						| 
							 | 
						        final_dropout (`bool` *optional*, defaults to False): | 
					
					
						
						| 
							 | 
						            Whether to apply a final dropout after the last feed-forward layer. | 
					
					
						
						| 
							 | 
						        attention_type (`str`, *optional*, defaults to `"default"`): | 
					
					
						
						| 
							 | 
						            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | 
					
					
						
						| 
							 | 
						        positional_embeddings (`str`, *optional*, defaults to `None`): | 
					
					
						
						| 
							 | 
						            The type of positional embeddings to apply to. | 
					
					
						
						| 
							 | 
						        num_positional_embeddings (`int`, *optional*, defaults to `None`): | 
					
					
						
						| 
							 | 
						            The maximum number of positional embeddings to apply. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        dim: int, | 
					
					
						
						| 
							 | 
						        num_attention_heads: int, | 
					
					
						
						| 
							 | 
						        attention_head_dim: int, | 
					
					
						
						| 
							 | 
						        dropout=0.0, | 
					
					
						
						| 
							 | 
						        cross_attention_dim: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        activation_fn: str = "geglu", | 
					
					
						
						| 
							 | 
						        num_embeds_ada_norm: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        attention_bias: bool = False, | 
					
					
						
						| 
							 | 
						        only_cross_attention: bool = False, | 
					
					
						
						| 
							 | 
						        double_self_attention: bool = False, | 
					
					
						
						| 
							 | 
						        upcast_attention: bool = False, | 
					
					
						
						| 
							 | 
						        norm_elementwise_affine: bool = True, | 
					
					
						
						| 
							 | 
						        norm_type: str = "layer_norm",   | 
					
					
						
						| 
							 | 
						        norm_eps: float = 1e-5, | 
					
					
						
						| 
							 | 
						        final_dropout: bool = False, | 
					
					
						
						| 
							 | 
						        attention_type: str = "default", | 
					
					
						
						| 
							 | 
						        positional_embeddings: Optional[str] = None, | 
					
					
						
						| 
							 | 
						        num_positional_embeddings: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        ada_norm_bias: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        ff_inner_dim: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        ff_bias: bool = True, | 
					
					
						
						| 
							 | 
						        attention_out_bias: bool = True, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.only_cross_attention = only_cross_attention | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | 
					
					
						
						| 
							 | 
						        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | 
					
					
						
						| 
							 | 
						        self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | 
					
					
						
						| 
							 | 
						        self.use_layer_norm = norm_type == "layer_norm" | 
					
					
						
						| 
							 | 
						        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | 
					
					
						
						| 
							 | 
						                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if positional_embeddings and (num_positional_embeddings is None): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if positional_embeddings == "sinusoidal": | 
					
					
						
						| 
							 | 
						            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.pos_embed = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.use_ada_layer_norm: | 
					
					
						
						| 
							 | 
						            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | 
					
					
						
						| 
							 | 
						        elif self.use_ada_layer_norm_zero: | 
					
					
						
						| 
							 | 
						            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | 
					
					
						
						| 
							 | 
						        elif self.use_ada_layer_norm_continuous: | 
					
					
						
						| 
							 | 
						            self.norm1 = AdaLayerNormContinuous( | 
					
					
						
						| 
							 | 
						                dim, | 
					
					
						
						| 
							 | 
						                ada_norm_continous_conditioning_embedding_dim, | 
					
					
						
						| 
							 | 
						                norm_elementwise_affine, | 
					
					
						
						| 
							 | 
						                norm_eps, | 
					
					
						
						| 
							 | 
						                ada_norm_bias, | 
					
					
						
						| 
							 | 
						                "rms_norm", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.attn1 = Attention( | 
					
					
						
						| 
							 | 
						            query_dim=dim, | 
					
					
						
						| 
							 | 
						            heads=num_attention_heads, | 
					
					
						
						| 
							 | 
						            dim_head=attention_head_dim, | 
					
					
						
						| 
							 | 
						            dropout=dropout, | 
					
					
						
						| 
							 | 
						            bias=attention_bias, | 
					
					
						
						| 
							 | 
						            cross_attention_dim=cross_attention_dim if only_cross_attention else None, | 
					
					
						
						| 
							 | 
						            upcast_attention=upcast_attention, | 
					
					
						
						| 
							 | 
						            out_bias=attention_out_bias, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if cross_attention_dim is not None or double_self_attention: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if self.use_ada_layer_norm: | 
					
					
						
						| 
							 | 
						                self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) | 
					
					
						
						| 
							 | 
						            elif self.use_ada_layer_norm_continuous: | 
					
					
						
						| 
							 | 
						                self.norm2 = AdaLayerNormContinuous( | 
					
					
						
						| 
							 | 
						                    dim, | 
					
					
						
						| 
							 | 
						                    ada_norm_continous_conditioning_embedding_dim, | 
					
					
						
						| 
							 | 
						                    norm_elementwise_affine, | 
					
					
						
						| 
							 | 
						                    norm_eps, | 
					
					
						
						| 
							 | 
						                    ada_norm_bias, | 
					
					
						
						| 
							 | 
						                    "rms_norm", | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.attn2 = Attention( | 
					
					
						
						| 
							 | 
						                query_dim=dim, | 
					
					
						
						| 
							 | 
						                cross_attention_dim=cross_attention_dim if not double_self_attention else None, | 
					
					
						
						| 
							 | 
						                heads=num_attention_heads, | 
					
					
						
						| 
							 | 
						                dim_head=attention_head_dim, | 
					
					
						
						| 
							 | 
						                dropout=dropout, | 
					
					
						
						| 
							 | 
						                bias=attention_bias, | 
					
					
						
						| 
							 | 
						                upcast_attention=upcast_attention, | 
					
					
						
						| 
							 | 
						                out_bias=attention_out_bias, | 
					
					
						
						| 
							 | 
						            )   | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.norm2 = None | 
					
					
						
						| 
							 | 
						            self.attn2 = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.use_ada_layer_norm_continuous: | 
					
					
						
						| 
							 | 
						            self.norm3 = AdaLayerNormContinuous( | 
					
					
						
						| 
							 | 
						                dim, | 
					
					
						
						| 
							 | 
						                ada_norm_continous_conditioning_embedding_dim, | 
					
					
						
						| 
							 | 
						                norm_elementwise_affine, | 
					
					
						
						| 
							 | 
						                norm_eps, | 
					
					
						
						| 
							 | 
						                ada_norm_bias, | 
					
					
						
						| 
							 | 
						                "layer_norm", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif not self.use_ada_layer_norm_single: | 
					
					
						
						| 
							 | 
						            self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.ff = FeedForward( | 
					
					
						
						| 
							 | 
						            dim, | 
					
					
						
						| 
							 | 
						            dropout=dropout, | 
					
					
						
						| 
							 | 
						            activation_fn=activation_fn, | 
					
					
						
						| 
							 | 
						            final_dropout=final_dropout, | 
					
					
						
						| 
							 | 
						            inner_dim=ff_inner_dim, | 
					
					
						
						| 
							 | 
						            bias=ff_bias, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if attention_type == "gated" or attention_type == "gated-text-image": | 
					
					
						
						| 
							 | 
						            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.use_ada_layer_norm_single: | 
					
					
						
						| 
							 | 
						            self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._chunk_size = None | 
					
					
						
						| 
							 | 
						        self._chunk_dim = 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._chunk_size = chunk_size | 
					
					
						
						| 
							 | 
						        self._chunk_dim = dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.FloatTensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        timestep: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        cross_attention_kwargs: Dict[str, Any] = None, | 
					
					
						
						| 
							 | 
						        class_labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        garment_features=None, | 
					
					
						
						| 
							 | 
						        curr_garment_feat_idx=0, | 
					
					
						
						| 
							 | 
						        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						    ) -> torch.FloatTensor: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        batch_size = hidden_states.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.use_ada_layer_norm: | 
					
					
						
						| 
							 | 
						            norm_hidden_states = self.norm1(hidden_states, timestep) | 
					
					
						
						| 
							 | 
						        elif self.use_ada_layer_norm_zero: | 
					
					
						
						| 
							 | 
						            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | 
					
					
						
						| 
							 | 
						                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif self.use_layer_norm: | 
					
					
						
						| 
							 | 
						            norm_hidden_states = self.norm1(hidden_states) | 
					
					
						
						| 
							 | 
						        elif self.use_ada_layer_norm_continuous: | 
					
					
						
						| 
							 | 
						            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) | 
					
					
						
						| 
							 | 
						        elif self.use_ada_layer_norm_single: | 
					
					
						
						| 
							 | 
						            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | 
					
					
						
						| 
							 | 
						                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | 
					
					
						
						| 
							 | 
						            ).chunk(6, dim=1) | 
					
					
						
						| 
							 | 
						            norm_hidden_states = self.norm1(hidden_states) | 
					
					
						
						| 
							 | 
						            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | 
					
					
						
						| 
							 | 
						            norm_hidden_states = norm_hidden_states.squeeze(1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError("Incorrect norm used") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.pos_embed is not None: | 
					
					
						
						| 
							 | 
						            norm_hidden_states = self.pos_embed(norm_hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | 
					
					
						
						| 
							 | 
						        gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        modify_norm_hidden_states = torch.cat([norm_hidden_states,garment_features[curr_garment_feat_idx]], dim=1) | 
					
					
						
						| 
							 | 
						        curr_garment_feat_idx +=1 | 
					
					
						
						| 
							 | 
						        attn_output = self.attn1( | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            modify_norm_hidden_states, | 
					
					
						
						| 
							 | 
						            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            **cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if self.use_ada_layer_norm_zero: | 
					
					
						
						| 
							 | 
						            attn_output = gate_msa.unsqueeze(1) * attn_output | 
					
					
						
						| 
							 | 
						        elif self.use_ada_layer_norm_single: | 
					
					
						
						| 
							 | 
						            attn_output = gate_msa * attn_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = attn_output[:,:hidden_states.shape[-2],:] + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if hidden_states.ndim == 4: | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states.squeeze(1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if gligen_kwargs is not None: | 
					
					
						
						| 
							 | 
						            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.attn2 is not None: | 
					
					
						
						| 
							 | 
						            if self.use_ada_layer_norm: | 
					
					
						
						| 
							 | 
						                norm_hidden_states = self.norm2(hidden_states, timestep) | 
					
					
						
						| 
							 | 
						            elif self.use_ada_layer_norm_zero or self.use_layer_norm: | 
					
					
						
						| 
							 | 
						                norm_hidden_states = self.norm2(hidden_states) | 
					
					
						
						| 
							 | 
						            elif self.use_ada_layer_norm_single: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                norm_hidden_states = hidden_states | 
					
					
						
						| 
							 | 
						            elif self.use_ada_layer_norm_continuous: | 
					
					
						
						| 
							 | 
						                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                raise ValueError("Incorrect norm") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.pos_embed is not None and self.use_ada_layer_norm_single is False: | 
					
					
						
						| 
							 | 
						                norm_hidden_states = self.pos_embed(norm_hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attn_output = self.attn2( | 
					
					
						
						| 
							 | 
						                norm_hidden_states, | 
					
					
						
						| 
							 | 
						                encoder_hidden_states=encoder_hidden_states, | 
					
					
						
						| 
							 | 
						                attention_mask=encoder_attention_mask, | 
					
					
						
						| 
							 | 
						                **cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            hidden_states = attn_output + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.use_ada_layer_norm_continuous: | 
					
					
						
						| 
							 | 
						            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) | 
					
					
						
						| 
							 | 
						        elif not self.use_ada_layer_norm_single: | 
					
					
						
						| 
							 | 
						            norm_hidden_states = self.norm3(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.use_ada_layer_norm_zero: | 
					
					
						
						| 
							 | 
						            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.use_ada_layer_norm_single: | 
					
					
						
						| 
							 | 
						            norm_hidden_states = self.norm2(hidden_states) | 
					
					
						
						| 
							 | 
						            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self._chunk_size is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            ff_output = _chunked_feed_forward( | 
					
					
						
						| 
							 | 
						                self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            ff_output = self.ff(norm_hidden_states, scale=lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.use_ada_layer_norm_zero: | 
					
					
						
						| 
							 | 
						            ff_output = gate_mlp.unsqueeze(1) * ff_output | 
					
					
						
						| 
							 | 
						        elif self.use_ada_layer_norm_single: | 
					
					
						
						| 
							 | 
						            ff_output = gate_mlp * ff_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = ff_output + hidden_states | 
					
					
						
						| 
							 | 
						        if hidden_states.ndim == 4: | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states.squeeze(1) | 
					
					
						
						| 
							 | 
						        return hidden_states,curr_garment_feat_idx | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@maybe_allow_in_graph | 
					
					
						
						| 
							 | 
						class TemporalBasicTransformerBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    A basic Transformer block for video like data. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        dim (`int`): The number of channels in the input and output. | 
					
					
						
						| 
							 | 
						        time_mix_inner_dim (`int`): The number of channels for temporal attention. | 
					
					
						
						| 
							 | 
						        num_attention_heads (`int`): The number of heads to use for multi-head attention. | 
					
					
						
						| 
							 | 
						        attention_head_dim (`int`): The number of channels in each head. | 
					
					
						
						| 
							 | 
						        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        dim: int, | 
					
					
						
						| 
							 | 
						        time_mix_inner_dim: int, | 
					
					
						
						| 
							 | 
						        num_attention_heads: int, | 
					
					
						
						| 
							 | 
						        attention_head_dim: int, | 
					
					
						
						| 
							 | 
						        cross_attention_dim: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.is_res = dim == time_mix_inner_dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.norm_in = nn.LayerNorm(dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.norm_in = nn.LayerNorm(dim) | 
					
					
						
						| 
							 | 
						        self.ff_in = FeedForward( | 
					
					
						
						| 
							 | 
						            dim, | 
					
					
						
						| 
							 | 
						            dim_out=time_mix_inner_dim, | 
					
					
						
						| 
							 | 
						            activation_fn="geglu", | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.norm1 = nn.LayerNorm(time_mix_inner_dim) | 
					
					
						
						| 
							 | 
						        self.attn1 = Attention( | 
					
					
						
						| 
							 | 
						            query_dim=time_mix_inner_dim, | 
					
					
						
						| 
							 | 
						            heads=num_attention_heads, | 
					
					
						
						| 
							 | 
						            dim_head=attention_head_dim, | 
					
					
						
						| 
							 | 
						            cross_attention_dim=None, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if cross_attention_dim is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            self.norm2 = nn.LayerNorm(time_mix_inner_dim) | 
					
					
						
						| 
							 | 
						            self.attn2 = Attention( | 
					
					
						
						| 
							 | 
						                query_dim=time_mix_inner_dim, | 
					
					
						
						| 
							 | 
						                cross_attention_dim=cross_attention_dim, | 
					
					
						
						| 
							 | 
						                heads=num_attention_heads, | 
					
					
						
						| 
							 | 
						                dim_head=attention_head_dim, | 
					
					
						
						| 
							 | 
						            )   | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.norm2 = None | 
					
					
						
						| 
							 | 
						            self.attn2 = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.norm3 = nn.LayerNorm(time_mix_inner_dim) | 
					
					
						
						| 
							 | 
						        self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._chunk_size = None | 
					
					
						
						| 
							 | 
						        self._chunk_dim = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._chunk_size = chunk_size | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._chunk_dim = 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.FloatTensor, | 
					
					
						
						| 
							 | 
						        num_frames: int, | 
					
					
						
						| 
							 | 
						        encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						    ) -> torch.FloatTensor: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        batch_size = hidden_states.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch_frames, seq_length, channels = hidden_states.shape | 
					
					
						
						| 
							 | 
						        batch_size = batch_frames // num_frames | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.permute(0, 2, 1, 3) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						        hidden_states = self.norm_in(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self._chunk_size is not None: | 
					
					
						
						| 
							 | 
						            hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            hidden_states = self.ff_in(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.is_res: | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states + residual | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        norm_hidden_states = self.norm1(hidden_states) | 
					
					
						
						| 
							 | 
						        attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) | 
					
					
						
						| 
							 | 
						        hidden_states = attn_output + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.attn2 is not None: | 
					
					
						
						| 
							 | 
						            norm_hidden_states = self.norm2(hidden_states) | 
					
					
						
						| 
							 | 
						            attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states) | 
					
					
						
						| 
							 | 
						            hidden_states = attn_output + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        norm_hidden_states = self.norm3(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self._chunk_size is not None: | 
					
					
						
						| 
							 | 
						            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            ff_output = self.ff(norm_hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.is_res: | 
					
					
						
						| 
							 | 
						            hidden_states = ff_output + hidden_states | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            hidden_states = ff_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.permute(0, 2, 1, 3) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class SkipFFTransformerBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        dim: int, | 
					
					
						
						| 
							 | 
						        num_attention_heads: int, | 
					
					
						
						| 
							 | 
						        attention_head_dim: int, | 
					
					
						
						| 
							 | 
						        kv_input_dim: int, | 
					
					
						
						| 
							 | 
						        kv_input_dim_proj_use_bias: bool, | 
					
					
						
						| 
							 | 
						        dropout=0.0, | 
					
					
						
						| 
							 | 
						        cross_attention_dim: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        attention_bias: bool = False, | 
					
					
						
						| 
							 | 
						        attention_out_bias: bool = True, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        if kv_input_dim != dim: | 
					
					
						
						| 
							 | 
						            self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.kv_mapper = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.norm1 = RMSNorm(dim, 1e-06) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.attn1 = Attention( | 
					
					
						
						| 
							 | 
						            query_dim=dim, | 
					
					
						
						| 
							 | 
						            heads=num_attention_heads, | 
					
					
						
						| 
							 | 
						            dim_head=attention_head_dim, | 
					
					
						
						| 
							 | 
						            dropout=dropout, | 
					
					
						
						| 
							 | 
						            bias=attention_bias, | 
					
					
						
						| 
							 | 
						            cross_attention_dim=cross_attention_dim, | 
					
					
						
						| 
							 | 
						            out_bias=attention_out_bias, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.norm2 = RMSNorm(dim, 1e-06) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.attn2 = Attention( | 
					
					
						
						| 
							 | 
						            query_dim=dim, | 
					
					
						
						| 
							 | 
						            cross_attention_dim=cross_attention_dim, | 
					
					
						
						| 
							 | 
						            heads=num_attention_heads, | 
					
					
						
						| 
							 | 
						            dim_head=attention_head_dim, | 
					
					
						
						| 
							 | 
						            dropout=dropout, | 
					
					
						
						| 
							 | 
						            bias=attention_bias, | 
					
					
						
						| 
							 | 
						            out_bias=attention_out_bias, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs): | 
					
					
						
						| 
							 | 
						        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.kv_mapper is not None: | 
					
					
						
						| 
							 | 
						            encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        norm_hidden_states = self.norm1(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.attn1( | 
					
					
						
						| 
							 | 
						            norm_hidden_states, | 
					
					
						
						| 
							 | 
						            encoder_hidden_states=encoder_hidden_states, | 
					
					
						
						| 
							 | 
						            **cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = attn_output + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        norm_hidden_states = self.norm2(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.attn2( | 
					
					
						
						| 
							 | 
						            norm_hidden_states, | 
					
					
						
						| 
							 | 
						            encoder_hidden_states=encoder_hidden_states, | 
					
					
						
						| 
							 | 
						            **cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = attn_output + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class FeedForward(nn.Module): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    A feed-forward layer. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        dim (`int`): The number of channels in the input. | 
					
					
						
						| 
							 | 
						        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | 
					
					
						
						| 
							 | 
						        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | 
					
					
						
						| 
							 | 
						        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | 
					
					
						
						| 
							 | 
						        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | 
					
					
						
						| 
							 | 
						        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | 
					
					
						
						| 
							 | 
						        bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        dim: int, | 
					
					
						
						| 
							 | 
						        dim_out: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        mult: int = 4, | 
					
					
						
						| 
							 | 
						        dropout: float = 0.0, | 
					
					
						
						| 
							 | 
						        activation_fn: str = "geglu", | 
					
					
						
						| 
							 | 
						        final_dropout: bool = False, | 
					
					
						
						| 
							 | 
						        inner_dim=None, | 
					
					
						
						| 
							 | 
						        bias: bool = True, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        if inner_dim is None: | 
					
					
						
						| 
							 | 
						            inner_dim = int(dim * mult) | 
					
					
						
						| 
							 | 
						        dim_out = dim_out if dim_out is not None else dim | 
					
					
						
						| 
							 | 
						        linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if activation_fn == "gelu": | 
					
					
						
						| 
							 | 
						            act_fn = GELU(dim, inner_dim, bias=bias) | 
					
					
						
						| 
							 | 
						        if activation_fn == "gelu-approximate": | 
					
					
						
						| 
							 | 
						            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | 
					
					
						
						| 
							 | 
						        elif activation_fn == "geglu": | 
					
					
						
						| 
							 | 
						            act_fn = GEGLU(dim, inner_dim, bias=bias) | 
					
					
						
						| 
							 | 
						        elif activation_fn == "geglu-approximate": | 
					
					
						
						| 
							 | 
						            act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.net = nn.ModuleList([]) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.net.append(act_fn) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.net.append(nn.Dropout(dropout)) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.net.append(linear_cls(inner_dim, dim_out, bias=bias)) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if final_dropout: | 
					
					
						
						| 
							 | 
						            self.net.append(nn.Dropout(dropout)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear) | 
					
					
						
						| 
							 | 
						        for module in self.net: | 
					
					
						
						| 
							 | 
						            if isinstance(module, compatible_cls): | 
					
					
						
						| 
							 | 
						                hidden_states = module(hidden_states, scale) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                hidden_states = module(hidden_states) | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						
 |