File size: 13,778 Bytes
b6d321c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import os
import shutil
import uuid
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Literal
import numpy as np
from PIL import Image as PILImage
try: # absolute imports when installed
from trackio.media.audio_writer import AudioFormatType, write_audio
from trackio.media.file_storage import FileStorage
from trackio.media.video_writer import write_video
from trackio.utils import MEDIA_DIR
except ImportError: # relative imports for local execution on Spaces
from media.audio_writer import AudioFormatType, write_audio
from media.file_storage import FileStorage
from media.video_writer import write_video
from utils import MEDIA_DIR
class TrackioMedia(ABC):
"""
Abstract base class for Trackio media objects
Provides shared functionality for file handling and serialization.
"""
TYPE: str
def __init_subclass__(cls, **kwargs):
"""Ensure subclasses define the TYPE attribute."""
super().__init_subclass__(**kwargs)
if not hasattr(cls, "TYPE") or cls.TYPE is None:
raise TypeError(f"Class {cls.__name__} must define TYPE attribute")
def __init__(self, value, caption: str | None = None):
self.caption = caption
self._value = value
self._file_path: Path | None = None
if isinstance(self._value, str | Path):
if not os.path.isfile(self._value):
raise ValueError(f"File not found: {self._value}")
def _file_extension(self) -> str:
if self._file_path:
return self._file_path.suffix[1:].lower()
if isinstance(self._value, str | Path):
path = Path(self._value)
return path.suffix[1:].lower()
if hasattr(self, "_format") and self._format:
return self._format
return "unknown"
def _get_relative_file_path(self) -> Path | None:
return self._file_path
def _get_absolute_file_path(self) -> Path | None:
if self._file_path:
return MEDIA_DIR / self._file_path
return None
def _save(self, project: str, run: str, step: int = 0):
if self._file_path:
return
media_dir = FileStorage.init_project_media_path(project, run, step)
filename = f"{uuid.uuid4()}.{self._file_extension()}"
file_path = media_dir / filename
self._save_media(file_path)
self._file_path = file_path.relative_to(MEDIA_DIR)
@abstractmethod
def _save_media(self, file_path: Path):
"""
Performs the actual media saving logic.
"""
pass
def _to_dict(self) -> dict:
if not self._file_path:
raise ValueError("Media must be saved to file before serialization")
return {
"_type": self.TYPE,
"file_path": str(self._get_relative_file_path()),
"caption": self.caption,
}
TrackioImageSourceType = str | Path | np.ndarray | PILImage.Image
class TrackioImage(TrackioMedia):
"""
Initializes an Image object.
Example:
```python
import trackio
import numpy as np
from PIL import Image
# Create an image from numpy array
image_data = np.random.randint(0, 255, (64, 64, 3), dtype=np.uint8)
image = trackio.Image(image_data, caption="Random image")
trackio.log({"my_image": image})
# Create an image from PIL Image
pil_image = Image.new('RGB', (100, 100), color='red')
image = trackio.Image(pil_image, caption="Red square")
trackio.log({"red_image": image})
# Create an image from file path
image = trackio.Image("path/to/image.jpg", caption="Photo from file")
trackio.log({"file_image": image})
```
Args:
value (`str`, `Path`, `numpy.ndarray`, or `PIL.Image`, *optional*):
A path to an image, a PIL Image, or a numpy array of shape (height, width, channels).
If numpy array, should be of type `np.uint8` with RGB values in the range `[0, 255]`.
caption (`str`, *optional*):
A string caption for the image.
"""
TYPE = "trackio.image"
def __init__(self, value: TrackioImageSourceType, caption: str | None = None):
super().__init__(value, caption)
self._format: str | None = None
if not isinstance(self._value, TrackioImageSourceType):
raise ValueError(
f"Invalid value type, expected {TrackioImageSourceType}, got {type(self._value)}"
)
if isinstance(self._value, np.ndarray) and self._value.dtype != np.uint8:
raise ValueError(
f"Invalid value dtype, expected np.uint8, got {self._value.dtype}"
)
if (
isinstance(self._value, np.ndarray | PILImage.Image)
and self._format is None
):
self._format = "png"
def _as_pil(self) -> PILImage.Image | None:
try:
if isinstance(self._value, np.ndarray):
arr = np.asarray(self._value).astype("uint8")
return PILImage.fromarray(arr).convert("RGBA")
if isinstance(self._value, PILImage.Image):
return self._value.convert("RGBA")
except Exception as e:
raise ValueError(f"Failed to process image data: {self._value}") from e
return None
def _save_media(self, file_path: Path):
if pil := self._as_pil():
pil.save(file_path, format=self._format)
elif isinstance(self._value, str | Path):
if os.path.isfile(self._value):
shutil.copy(self._value, file_path)
else:
raise ValueError(f"File not found: {self._value}")
TrackioVideoSourceType = str | Path | np.ndarray
TrackioVideoFormatType = Literal["gif", "mp4", "webm"]
class TrackioVideo(TrackioMedia):
"""
Initializes a Video object.
Example:
```python
import trackio
import numpy as np
# Create a simple video from numpy array
frames = np.random.randint(0, 255, (10, 3, 64, 64), dtype=np.uint8)
video = trackio.Video(frames, caption="Random video", fps=30)
# Create a batch of videos
batch_frames = np.random.randint(0, 255, (3, 10, 3, 64, 64), dtype=np.uint8)
batch_video = trackio.Video(batch_frames, caption="Batch of videos", fps=15)
# Create video from file path
video = trackio.Video("path/to/video.mp4", caption="Video from file")
```
Args:
value (`str`, `Path`, or `numpy.ndarray`, *optional*):
A path to a video file, or a numpy array.
If numpy array, should be of type `np.uint8` with RGB values in the range `[0, 255]`.
It is expected to have shape of either (frames, channels, height, width) or (batch, frames, channels, height, width).
For the latter, the videos will be tiled into a grid.
caption (`str`, *optional*):
A string caption for the video.
fps (`int`, *optional*):
Frames per second for the video. Only used when value is an ndarray. Default is `24`.
format (`Literal["gif", "mp4", "webm"]`, *optional*):
Video format ("gif", "mp4", or "webm"). Only used when value is an ndarray. Default is "gif".
"""
TYPE = "trackio.video"
def __init__(
self,
value: TrackioVideoSourceType,
caption: str | None = None,
fps: int | None = None,
format: TrackioVideoFormatType | None = None,
):
super().__init__(value, caption)
if not isinstance(self._value, TrackioVideoSourceType):
raise ValueError(
f"Invalid value type, expected {TrackioVideoSourceType}, got {type(self._value)}"
)
if isinstance(self._value, np.ndarray):
if self._value.dtype != np.uint8:
raise ValueError(
f"Invalid value dtype, expected np.uint8, got {self._value.dtype}"
)
if format is None:
format = "gif"
if fps is None:
fps = 24
self._fps = fps
self._format = format
@property
def _codec(self) -> str:
match self._format:
case "gif":
return "gif"
case "mp4":
return "h264"
case "webm":
return "vp9"
case _:
raise ValueError(f"Unsupported format: {self._format}")
def _save_media(self, file_path: Path):
if isinstance(self._value, np.ndarray):
video = TrackioVideo._process_ndarray(self._value)
write_video(file_path, video, fps=self._fps, codec=self._codec)
elif isinstance(self._value, str | Path):
if os.path.isfile(self._value):
shutil.copy(self._value, file_path)
else:
raise ValueError(f"File not found: {self._value}")
@staticmethod
def _process_ndarray(value: np.ndarray) -> np.ndarray:
# Verify value is either 4D (single video) or 5D array (batched videos).
# Expected format: (frames, channels, height, width) or (batch, frames, channels, height, width)
if value.ndim < 4:
raise ValueError(
"Video requires at least 4 dimensions (frames, channels, height, width)"
)
if value.ndim > 5:
raise ValueError(
"Videos can have at most 5 dimensions (batch, frames, channels, height, width)"
)
if value.ndim == 4:
# Reshape to 5D with single batch: (1, frames, channels, height, width)
value = value[np.newaxis, ...]
value = TrackioVideo._tile_batched_videos(value)
return value
@staticmethod
def _tile_batched_videos(video: np.ndarray) -> np.ndarray:
"""
Tiles a batch of videos into a grid of videos.
Input format: (batch, frames, channels, height, width) - original FCHW format
Output format: (frames, total_height, total_width, channels)
"""
batch_size, frames, channels, height, width = video.shape
next_pow2 = 1 << (batch_size - 1).bit_length()
if batch_size != next_pow2:
pad_len = next_pow2 - batch_size
pad_shape = (pad_len, frames, channels, height, width)
padding = np.zeros(pad_shape, dtype=video.dtype)
video = np.concatenate((video, padding), axis=0)
batch_size = next_pow2
n_rows = 1 << ((batch_size.bit_length() - 1) // 2)
n_cols = batch_size // n_rows
# Reshape to grid layout: (n_rows, n_cols, frames, channels, height, width)
video = video.reshape(n_rows, n_cols, frames, channels, height, width)
# Rearrange dimensions to (frames, total_height, total_width, channels)
video = video.transpose(2, 0, 4, 1, 5, 3)
video = video.reshape(frames, n_rows * height, n_cols * width, channels)
return video
TrackioAudioSourceType = str | Path | np.ndarray
class TrackioAudio(TrackioMedia):
"""
Initializes an Audio object.
Example:
```python
import trackio
import numpy as np
# Generate a 1-second 440 Hz sine wave (mono)
sr = 16000
t = np.linspace(0, 1, sr, endpoint=False)
wave = 0.2 * np.sin(2 * np.pi * 440 * t)
audio = trackio.Audio(wave, caption="A4 sine", sample_rate=sr, format="wav")
trackio.log({"tone": audio})
# Stereo from numpy array (shape: samples, 2)
stereo = np.stack([wave, wave], axis=1)
audio = trackio.Audio(stereo, caption="Stereo", sample_rate=sr, format="mp3")
trackio.log({"stereo": audio})
# From an existing file
audio = trackio.Audio("path/to/audio.wav", caption="From file")
trackio.log({"file_audio": audio})
```
Args:
value (`str`, `Path`, or `numpy.ndarray`, *optional*):
A path to an audio file, or a numpy array.
The array should be shaped `(samples,)` for mono or `(samples, 2)` for stereo.
Float arrays will be peak-normalized and converted to 16-bit PCM; integer arrays will be converted to 16-bit PCM as needed.
caption (`str`, *optional*):
A string caption for the audio.
sample_rate (`int`, *optional*):
Sample rate in Hz. Required when `value` is a numpy array.
format (`Literal["wav", "mp3"]`, *optional*):
Audio format used when `value` is a numpy array. Default is "wav".
"""
TYPE = "trackio.audio"
def __init__(
self,
value: TrackioAudioSourceType,
caption: str | None = None,
sample_rate: int | None = None,
format: AudioFormatType | None = None,
):
super().__init__(value, caption)
if isinstance(value, np.ndarray):
if sample_rate is None:
raise ValueError("Sample rate is required when value is an ndarray")
if format is None:
format = "wav"
self._format = format
self._sample_rate = sample_rate
def _save_media(self, file_path: Path):
if isinstance(self._value, np.ndarray):
write_audio(
data=self._value,
sample_rate=self._sample_rate,
filename=file_path,
format=self._format,
)
elif isinstance(self._value, str | Path):
if os.path.isfile(self._value):
shutil.copy(self._value, file_path)
else:
raise ValueError(f"File not found: {self._value}")
|