Update main.py
Browse files
main.py
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
-
from huggingface_hub import InferenceClient
|
| 4 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# **************************************************
|
| 7 |
# import transformers
|
| 8 |
# import torch
|
| 9 |
|
| 10 |
-
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 11 |
-
|
| 12 |
# pipeline = transformers.pipeline(
|
| 13 |
# "text-generation",
|
| 14 |
# model=model_id,
|
|
@@ -16,7 +17,7 @@ model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
| 16 |
# device_map="auto",
|
| 17 |
# )
|
| 18 |
|
| 19 |
-
def
|
| 20 |
messages = [
|
| 21 |
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 22 |
{"role": "user", "content": "Who are you?"},
|
|
@@ -55,13 +56,14 @@ class Item(BaseModel):
|
|
| 55 |
|
| 56 |
app = FastAPI()
|
| 57 |
|
| 58 |
-
def format_prompt(
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
def generate(item: Item):
|
| 67 |
temperature = float(item.temperature)
|
|
@@ -78,13 +80,29 @@ def generate(item: Item):
|
|
| 78 |
seed=item.seed,
|
| 79 |
)
|
| 80 |
|
| 81 |
-
formatted_prompt = format_prompt(
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
for response in stream:
|
| 86 |
-
|
| 87 |
-
return output
|
| 88 |
|
| 89 |
@app.post("/generate/")
|
| 90 |
async def generate_text(item: Item):
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
|
|
|
| 3 |
import uvicorn
|
| 4 |
+
import prompt_style
|
| 5 |
+
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
+
import torch
|
| 8 |
|
| 9 |
# **************************************************
|
| 10 |
# import transformers
|
| 11 |
# import torch
|
| 12 |
|
|
|
|
|
|
|
| 13 |
# pipeline = transformers.pipeline(
|
| 14 |
# "text-generation",
|
| 15 |
# model=model_id,
|
|
|
|
| 17 |
# device_map="auto",
|
| 18 |
# )
|
| 19 |
|
| 20 |
+
def generate_1(item: Item):
|
| 21 |
messages = [
|
| 22 |
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 23 |
{"role": "user", "content": "Who are you?"},
|
|
|
|
| 56 |
|
| 57 |
app = FastAPI()
|
| 58 |
|
| 59 |
+
def format_prompt(item: Item):
|
| 60 |
+
messages = [
|
| 61 |
+
{"role": "system", "content": prompt_style.data},
|
| 62 |
+
]
|
| 63 |
+
for it in item.history:
|
| 64 |
+
messages.append[{"role" : "user", "content": it[0]}]
|
| 65 |
+
messages.append[{"role" : "assistant", "content": it[1]}]
|
| 66 |
+
return messages
|
| 67 |
|
| 68 |
def generate(item: Item):
|
| 69 |
temperature = float(item.temperature)
|
|
|
|
| 80 |
seed=item.seed,
|
| 81 |
)
|
| 82 |
|
| 83 |
+
formatted_prompt = format_prompt(item)
|
| 84 |
+
|
| 85 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 86 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 87 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto",)
|
| 88 |
+
|
| 89 |
+
input_ids = tokenizer.apply_chat_template(formatted_prompt, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
| 90 |
+
|
| 91 |
+
terminators = [
|
| 92 |
+
tokenizer.eos_token_id,
|
| 93 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
outputs = model.generate(input_ids, eos_token_id=terminators, do_sample=True, **generate_kwargs)
|
| 97 |
+
response = outputs[0][input_ids.shape[-1]:]
|
| 98 |
+
return tokenizer.decode(response, skip_special_tokens=True)
|
| 99 |
+
|
| 100 |
+
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
| 101 |
+
# output = ""
|
| 102 |
|
| 103 |
+
# for response in stream:
|
| 104 |
+
# output += response.token.text
|
| 105 |
+
# return output
|
| 106 |
|
| 107 |
@app.post("/generate/")
|
| 108 |
async def generate_text(item: Item):
|