Update main.py
Browse files
main.py
CHANGED
|
@@ -8,13 +8,20 @@ from llama_cpp import Llama
|
|
| 8 |
import time
|
| 9 |
|
| 10 |
|
| 11 |
-
model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3-GGUF"
|
| 12 |
-
filename="Meta-Llama-3-8B-Instruct-abliterated-v3_q6.gguf"
|
| 13 |
# model_path = hf_hub_download(repo_id=model_id, filename="Meta-Llama-3-8B-Instruct-abliterated-v3_q6.gguf", token=os.environ['HF_TOKEN'])
|
| 14 |
# model = Llama(model_path=model_path, n_gpu_layers=-1, n_ctx=4096, verbose=False)
|
| 15 |
|
| 16 |
-
model = Llama.from_pretrained(repo_id=model_id, filename=filename, n_gpu_layers=-1, token=os.environ['HF_TOKEN'],
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
class Item(BaseModel):
|
| 20 |
prompt: str
|
|
@@ -40,11 +47,36 @@ def format_prompt(item: Item):
|
|
| 40 |
|
| 41 |
def generate(item: Item):
|
| 42 |
formatted_prompt = format_prompt(item)
|
| 43 |
-
output = model.create_chat_completion(messages=formatted_prompt, seed=item.seed,
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
|
|
|
| 48 |
|
| 49 |
@app.post("/generate/")
|
| 50 |
async def generate_text(item: Item):
|
|
|
|
| 8 |
import time
|
| 9 |
|
| 10 |
|
| 11 |
+
# model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3-GGUF"
|
| 12 |
+
# filename="Meta-Llama-3-8B-Instruct-abliterated-v3_q6.gguf"
|
| 13 |
# model_path = hf_hub_download(repo_id=model_id, filename="Meta-Llama-3-8B-Instruct-abliterated-v3_q6.gguf", token=os.environ['HF_TOKEN'])
|
| 14 |
# model = Llama(model_path=model_path, n_gpu_layers=-1, n_ctx=4096, verbose=False)
|
| 15 |
|
| 16 |
+
# model = Llama.from_pretrained(repo_id=model_id, filename=filename, n_gpu_layers=-1, token=os.environ['HF_TOKEN'],
|
| 17 |
+
# n_ctx=4096, verbose=False, attn_implementation="flash_attention_2")
|
| 18 |
+
|
| 19 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
|
| 20 |
+
|
| 21 |
+
model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3"
|
| 22 |
+
model_8bit = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
| 23 |
+
token=os.environ['HF_TOKEN'], attn_implementation="flash_attention_2")
|
| 24 |
+
|
| 25 |
|
| 26 |
class Item(BaseModel):
|
| 27 |
prompt: str
|
|
|
|
| 47 |
|
| 48 |
def generate(item: Item):
|
| 49 |
formatted_prompt = format_prompt(item)
|
| 50 |
+
# output = model.create_chat_completion(messages=formatted_prompt, seed=item.seed,
|
| 51 |
+
# temperature=item.temperature, max_tokens=item.max_new_tokens)
|
| 52 |
+
# out = output['choices'][0]['message']['content']
|
| 53 |
+
# return out
|
| 54 |
+
|
| 55 |
+
input_ids = tokenizer.apply_chat_template(
|
| 56 |
+
formatted_prompt,
|
| 57 |
+
add_generation_prompt=True,
|
| 58 |
+
return_tensors="pt"
|
| 59 |
+
).to("cuda")
|
| 60 |
+
|
| 61 |
+
terminators = [
|
| 62 |
+
tokenizer.eos_token_id,
|
| 63 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
outputs = model_8bit.generate(
|
| 67 |
+
input_ids,
|
| 68 |
+
max_new_tokens=item.max_new_tokens,
|
| 69 |
+
eos_token_id=terminators,
|
| 70 |
+
do_sample=True,
|
| 71 |
+
temperature=item.temperature,
|
| 72 |
+
top_p=item.top_p,
|
| 73 |
+
)
|
| 74 |
+
response = outputs[0][input_ids.shape[-1]:]
|
| 75 |
+
return tokenizer.decode(response, skip_special_tokens=True)
|
| 76 |
|
| 77 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 78 |
+
# generated_ids = model.generate(**inputs)
|
| 79 |
+
# outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 80 |
|
| 81 |
@app.post("/generate/")
|
| 82 |
async def generate_text(item: Item):
|