Spaces:
Paused
Paused
| import pytest | |
| from tests.utils import wrap_test_forked | |
| from src.enums import LangChainAction | |
| from importlib.metadata import version | |
| transformers_version = version('transformers') | |
| # pip install packaging | |
| from packaging import version | |
| sufficient_transformers_version = version.parse(transformers_version) >= version.parse("4.31.0") | |
| encoding = None | |
| def num_tokens_from_string(string: str, model_name=None) -> int: | |
| """Returns the number of tokens in a text string.""" | |
| global encoding | |
| if encoding is None: | |
| from transformers import AutoTokenizer | |
| encoding = AutoTokenizer.from_pretrained(model_name) | |
| num_tokens = len(encoding.encode(string)) | |
| return num_tokens | |
| import uuid | |
| def make_key(): | |
| return str(uuid.uuid4())[:8] | |
| def make_value(): | |
| return str(uuid.uuid4())[:4] | |
| SECRET_KEY = make_key() | |
| SECRET_VALUE = make_value() | |
| ANSWER_LEN = 256 # allow space for answer (same as | |
| def get_prompt(before, after): | |
| return f"[INST] {before}'{SECRET_KEY}' = '{SECRET_VALUE}'\n{after}\n\n What is the value of the key '{SECRET_KEY}'? [/INST]" | |
| def create_long_prompt_with_secret(prompt_len=None, secret_pos=None, model_name=None): | |
| import time | |
| t0 = time.time() | |
| before = "## UUID key/value pairs to remember:\n\n" | |
| while num_tokens_from_string(before, model_name) < secret_pos: | |
| before += f"'{make_key()}' = '{make_value()}'\n" | |
| after = "" | |
| while num_tokens_from_string(after, model_name) < (prompt_len - secret_pos - ANSWER_LEN): | |
| after += f"'{make_key()}' = '{make_value()}'\n" | |
| prompt = get_prompt(before, after) | |
| assert SECRET_VALUE in prompt | |
| assert num_tokens_from_string(prompt, model_name) <= prompt_len | |
| t1 = time.time() | |
| print("time to create long prompt: %.4f" % (t1 - t0)) | |
| return prompt | |
| def test_gradio_long_context_uuid_key_value_retrieval(base_model, rope_scaling, prompt_len, rel_secret_pos, client): | |
| import ast | |
| rope_scaling_factor = 1 | |
| if rope_scaling: | |
| rope_scaling = ast.literal_eval(rope_scaling) | |
| rope_scaling_factor = rope_scaling.get("factor") | |
| from transformers import AutoConfig | |
| config = AutoConfig.from_pretrained(base_model, use_auth_token=True, | |
| trust_remote_code=True) | |
| max_len = 4096 | |
| if hasattr(config, 'max_position_embeddings'): | |
| max_len = config.max_position_embeddings | |
| if prompt_len > max_len * rope_scaling_factor: | |
| pytest.xfail("no chance") | |
| secret_pos = int(prompt_len * rel_secret_pos) | |
| prompt = create_long_prompt_with_secret(prompt_len=prompt_len, secret_pos=secret_pos, model_name=base_model) | |
| if client: | |
| main_kwargs = dict(base_model=base_model, | |
| chat=True, stream_output=False, | |
| gradio=True, num_beams=1, | |
| prompt_type='plain', # prompting done explicitly above, so can use with generate() below | |
| block_gradio_exit=False, | |
| rope_scaling=rope_scaling, | |
| use_auth_token=True, | |
| save_dir="long_context") | |
| from src.gen import main | |
| main(**main_kwargs) | |
| from src.client_test import run_client_chat | |
| res_dict, client = run_client_chat( | |
| prompt=prompt, | |
| stream_output=False, max_new_tokens=16384, | |
| langchain_mode='Disabled', | |
| langchain_action=LangChainAction.QUERY.value, | |
| langchain_agents=[] | |
| ) | |
| assert res_dict['prompt'] == prompt | |
| assert res_dict['iinput'] == '' | |
| response = res_dict['response'] | |
| else: | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(base_model) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| base_model, | |
| device_map='auto', | |
| rope_scaling=rope_scaling, | |
| ) | |
| inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
| print(inputs.input_ids.shape) | |
| gen_out = model.generate(**inputs, max_new_tokens=300) | |
| response = tokenizer.batch_decode(gen_out)[0] | |
| response = response.split("</s>")[0] | |
| print(response) | |
| response = response.replace(prompt, "").replace("<s> ", "") # only keep response | |
| print(f"\nLLM response (expected value is '{SECRET_VALUE}'):", flush=True) | |
| print(response) | |
| assert SECRET_VALUE in response | |
| print("DONE", flush=True) | |
| def test_huggyllama_transformers_pr(base_model, type, factor): | |
| if type is None and factor > 1.0: | |
| pytest.xfail('no point') | |
| if type and factor == 1.0: | |
| pytest.xfail('no point') | |
| rope_scaling = {'type': type, 'factor': factor} if type else None | |
| # https://github.com/huggingface/transformers/pull/24653#issue-1788278122 | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(base_model) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| base_model, | |
| device_map='auto', | |
| rope_scaling=rope_scaling, | |
| ) | |
| prompt = '''You are given this machine learning research paper, please read it carefully and answer the follow up question. | |
| === BEGIN === | |
| 2306.15595v2 [cs.CL] 28 Jun 2023 | |
| arXiv | |
| EXTENDING CONTEXT WINDOW OF LARGE LANGUAGE MODELS VIA POSITION INTERPOLATION | |
| Shouyuan Chen Sherman Wong Liangjian Chen Yuandong Tian | |
| Meta Platforms Inc. | |
| {chenshouyuan, shermanwong, cli, yuandong}@meta . com | |
| 1 INTRODUCTION | |
| Large language models (LLMs) typically come with a pre-defined context window size. For exam- | |
| ple, inputs to LLaMA models (Touvron et al., 2023) must be fewer than 2048 tokens. This pre-set | |
| context window limit is frequently exceeded in applications such as conducting long conversations, | |
| summarizing long documents, or executing long-term planning. For these applications, LLMs with | |
| longer context windows are preferred. However, training an LLM from scratch with long context | |
| windows requires significant investments. This naturally leads to a question: Can we extend the | |
| context window of an existing pre-trained LLM? | |
| One straightforward approach is to fine-tune an existing pre-trained Transformer with a longer con- | |
| text window. However, empirically, we found that models trained this way adapt to long context | |
| windows very slowly. After training for more than 10000 batches, the effective context window | |
| saw a minimal increase, moving from 2048 to 2560 (Table 4). This suggests that such method is | |
| inefficient for extending to substantially longer context windows. | |
| While certain techniques such as ALiBi (Press et al., 2022) and LeX (Sun et al., 2022) enable length | |
| extrapolation of Transformers, i.e. train on short context windows and inference on longer ones, | |
| many existing pre-trained LLMs, including LLaMA (Touvron et al., 2023), use positional encodings | |
| that have weak extrapolation properties (e.g., RoPE (Su et al., 2021)). Therefore, the applicability | |
| of these techniques for extending the context window sizes of such LLMs remains limited. | |
| In this work, we introduce Position Interpolation to enable context window extensions for certain | |
| existing pre-trained LLMs, including LLaMA. The key idea is, instead of extrapolation, we directly | |
| down-scale the position indices so that the maximum position index matches the previous context | |
| window limit in the pre-training stage. See Figure 1 for an illustration. In other words, to accom- | |
| modate more input tokens, we interpolate the position encodings at neighboring integer positions, | |
| utilizing the fact that position encodings can be applied on non-integer positions, as opposed to | |
| extrapolating outside the trained positions, which may lead to catastrophic values. We verify our | |
| approach theoretically, by showing that the interpolated attention score has a much smaller upper | |
| bound (~ 600x smaller in LLaMA 7B setting) than the extrapolated one, and is thus much more | |
| stable. Therefore, interpolated position encodings are easier for the model to adapt. | |
| Empirically, we found that Position Interpolation is highly effective and efficient, requiring only a | |
| very short period of fine-tuning for the model to fully adapt to greatly extended context windows. | |
| We present experimental results for extending the context window to up to 32768 from the initial | |
| 2048 across 7B to 65B LLaMA models using Position Interpolation. Our results show that | |
| 1. Position Interpolation can easily enable very long context windows (e.g. 32768), requiring | |
| only fine-tuning for 1000 steps on the Pile (Gao et al., 2020) to achieve a good quality. | |
| The cost of fine-tuning is negligible compared to the pre-training costs. This confirms | |
| our hypothesis that it is relatively easy for the models to adapt to interpolated position | |
| encodings. | |
| 2. Position Interpolation generates strong models that can effectively make use of much ex- | |
| tended context window. We show that models extended by Position Interpolation enjoy | |
| significant perplexity gains from greatly extended context windows for text modeling, and | |
| we show that the perplexity reduces graceful with the enlargement of context windows. | |
| We also applied Position Interpolation in a long text summarization task, and demonstrate | |
| competitive performances. | |
| 3. Position Interpolation preserves model quality relatively well for tasks within its original | |
| context window sizes. We present a variety of evaluation results for the extended LLaMA | |
| models on the original LLaMA benchmark. Compared with original LLaMA models, the | |
| extended LLLaM A models saw a minor degradation on several standard benchmarks within | |
| a 2048 token limit. | |
| Our results highlight the innate ability of Transformer models to “extrapolate to sequence lengths | |
| longer than the ones encountered during training” as hypothesized in the seminal work of Vaswani | |
| et al. (2017). We reaffirm this hypothesis and suggest that the previously known weakness of ex- | |
| trapolating to longer sequences for language modeling (Press et al., 2022) may be due to direct | |
| extrapolation of positional encodings and it can be largely mitigated by interpolating position en- | |
| codings instead. | |
| Concurrent work. Right before our release, we are informed with a concurrent blogpost (Super- | |
| HOT kaiokendev (2023)) that also interpolates positional encoding in RoPE to extend the context | |
| window from 2K to 8K. Recently, open source community picks it up in Reddit post ! and Github | |
| Issues 2, which shows that fine-tuning with LoRA (Hu et al., 2021) also seems to work well. Our | |
| paper shows a full fine-tuning with up to 65B model work well with Position Interpolation, and we | |
| also give theoretical explanations why interpolation achieves much more stable results than extrap- | |
| olation, by showing that the upper bound of interplated attention score is much lower than that of | |
| extrapolated ones. | |
| 2 METHOD | |
| 2.1 BACKGROUND: ROTARY POSITION EMBEDDING (ROPE) | |
| Transformer models require explicit positional information to be injected, typically in the form of | |
| positional encodings, to represent the order of inputs. We consider Rotary Position Embedding | |
| (ROPE) (Su et al., 2021), which is the position encoding used in the LLLaMA model (Touvron et al., | |
| 2023). Given a position index m € [0, ¢) and an embedding vector x := [zg, 71,..., 241], Where | |
| d is the dimension of the attention head, RoPE defines a vector-valued complex function f{x, m) as | |
| follows | |
| Using RoPE, the self-attention score | |
| is only dependent on relative position m — 7 through trigonometric functions. Here q and k are the | |
| query and key vector for a specific attention head. At each layer, RoPE is applied on both query and | |
| key embeddings for computing attention scores. | |
| 2.2 DIRECT EXTRAPOLATION | |
| While the attention score in RoPE only depends on the relative positions, which is what we want, | |
| its extrapolation performance is not great . In particular, when directly extending to larger context | |
| windows unseen in the training, the perplexity may shoot up to very high numbers (i.e., > 10%), | |
| comparable to untrained models. | |
| Ideally, we want to see the model trained on a context window of size L = 2048 to still work | |
| reasonably well on longer context window, but may not have the capability to leverage information | |
| that appears beyond L. For example, to answer a question located at 3000, the model trained on | |
| maximal window size of I = 2048 cannot leverage evidences provided at location 0, but still | |
| can leverage the evidences provided at location 2900. In contrast, in reality we see catastrophic | |
| behaviors, i.e., question at location 3000 cannot be answered correctly, even if the evidences are | |
| located at location 2900. | |
| What is the reason behind? How could this happen if the attention score a,,,—,, decays as the relative | |
| distance |m — n/| increases, according to Section 3.4.3 of (Su et al., 2021), and content from very | |
| far distances should not matter that much? It turns out that the upper bound derived in Section 3.4.3 | |
| of (Su et al., 2021) may be too loose: while it indeed decays with respect to |m — nl, the bound | |
| can still be quite large (i.e., the bound can be critically depends on the magnitude of v;) and thus | |
| vacuous. In fact, if we treat all trigonometric functions as basis functions (i.e, ¢;(s) := #93), and | |
| think about Eqn. 2 as basis expansion as the following: | |
| where s is the positional span between a query and a key and h; := (ga; + igaj+1){k2j — tk2j+1) | |
| are complex coefficients depending on q and k (here the definition of h; is exactly the same as the | |
| definition of k; in Sec 3.4.3 in RoPE (Su et al., 2021)). Now the the issue becomes clear: as shown | |
| in Fig. 2, a, can be small in magnitude in the range of [0, 2048], but gives huge values out of the | |
| region. The underlying reason is that the trigonometric family {¢;} (with sufficiently large d) is | |
| a universal approximator and can fit any arbitrary functions. Therefore, for a, there always exist | |
| coefficients {h;} (i.e. key and query) that corresponds to small function values in [0, 2048] but | |
| much larger in regions beyond. | |
| 2.3 PROPOSED APPROACH: POSITION INTERPOLATION (PI) | |
| In Fig. 2, thanks to the smoothness of bases functions ¢; interpolation is much more stable and will | |
| not lead to wild values. Therefore, instead of extrapolate the attention score in Eqn. 3 to s > L, | |
| how about we define an attention score a{s) = a(Ls/L’) where L’ is the longer context window? | |
| Formally, we replace RoPE f by {’ defined as follows | |
| We call this transformation on the position encoding Position Interpolation. In this step, we reduce | |
| position indices from [0, L') to [0, L) to match the original range of indices before computing RoPE. | |
| Consequently, as inputs to RoPE, the maximum relative distance between any two tokens has been | |
| reduced from I’ to L. Since we align the ranges of position indices and relative distances before | |
| and after extension, we mitigate the effect on attention score computation due to context window | |
| extensions, which can allow the model easier to adapt. To further demonstrate this is the case, in the | |
| following theorem, we show that the interpolated attention score is well-behaved: | |
| While there is no close form for B(s) := 4/21 |Ag41(s)|, numerically it is at least larger than d, and for many positional difference s, B(s) is much larger than d | |
| (check Appendix B for the plot). Therefore, the interpolation bound is at least 2 - 294.73 ~ 600 x | |
| smaller than the extrapolation bound, and thus the interpolated attention score is much more stable | |
| than extrapolated one. | |
| Notably, our method of rescaling of position indices does not introduce extra weight, or modify | |
| the model architecture in any way. This makes it attractive in practical applications, since most | |
| infrastructure and optimization for the original model can be reused after the extension. | |
| Fine-tuning. We can further fine-tune the interpolated model using the next token prediction task | |
| with interpolated position encodings on the extended context window size using a pre-training cor- | |
| pus such as the Pile (Gao et al., 2020). In the next section, we show that our fine-tuning process | |
| only needs tens to hundreds thousands of examples. We also find that the result of the fine-tuning | |
| is not sensitive to the choice of examples. The reason may be that the model is only adapting to the | |
| new context window during the fine-tuning phase, starting from a good initialization, as opposed to | |
| acquiring new knowledge. | |
| Other ways to reduce interpolation/extrapolation bound. From the expression of the interpola- | |
| tion (Eqn. 5) and extrapolation bound (Eqn. 8), a common term is max; ||, which is the maximal | |
| magnitude of query/key products. If we enforce a regularization on || during LLM training, it is | |
| possible that the catastrophic extrapolation error can be mitigated or even resolved. In fact, if we | |
| apply ridge regression with proper regularization to fit a curve in Fig. 2, the magnitude of extrapo- | |
| lated a(s) when s > L can be comparable to that within [0, L]. To our knowledge, we are not aware | |
| of existing LLM pre-training techniques that leverage this regularization and will leave it for future | |
| work. | |
| 3 EXPERIMENTS | |
| We show Position Interpolation can effectively extend context window up to 32 times of the original | |
| size, and such extension can be done with only several hundreds of training steps. We show the | |
| resulting models are strong LLMs with fully effective long context windows. We demonstrate its | |
| performance in a number of tasks including language modeling, passkey retrieval, and long doc- | |
| ument summarization. We also present benchmark results of the extended models on the original | |
| LLaMA evaluation benchmarks. | |
| 3.1 SETUP | |
| Model Variants. We extended the pre-trained 7B, 13B, 33B and 65B LLaMA models (Touvron | |
| et al., 2023) to various context window of sizes up to 32768, using either direct fine-tuning or | |
| Position Interpoloation method. Except for rescaling the position indices for models extended with | |
| Position Interpolation, we did not modify LLaMA model architectures (Touvron et al., 2023) in any | |
| ways. | |
| Training Procedure. We fine-tune all model variants using the next token prediction objective. We | |
| use AdamW (Loshchilov & Hutter, 2019) with 5; = 0.9 and 2 = 0.95. We use a linear learning | |
| rate warmup of 20 steps starting from 10% of the maximum learning rate. For 7B and 13B models, | |
| we set the learning rate to 2 x 1075 and for 33B and 65B models we set the learning rate to 1072. We | |
| set the weight decay to zero. For extending 7B, 13B and 33B models to the 8192 context window | |
| size, we use 32 A100 GPUs and 64 global batch size. For all other cases we use 128 A100 GPUs and | |
| 128 global batch size. We note that the main need of using more GPUs is memory limitation during | |
| fine-tuning, and it is possible to use fewer GPUs in certain cases. We train all models using PyTorch | |
| (Paszke et al., 2019) with Fully Sharded Data Parallel (Zhao et al., 2023) and Flash Attention (Dao | |
| et al., 2022). | |
| If not specified otherwise, for the Position Interpolation method, we fine-tune the models for 1000 | |
| steps. For the direct fine-tuning method, we use 10000 steps. We primarily fine-tune using the Pile | |
| training dataset (Gao et al., 2020). In Section 3.4 we also compared fine-tuning performance on the | |
| RedPajama dataset (Computer, 2023). | |
| 3.2 LONG SEQUENCE LANGUAGE MODELING | |
| We evaluate the long sequence language modeling performance of our extended models and base- | |
| lines on two datasets: book corpus (PG-19) (Rae et al., 2020) and cleaned Arxiv Math proof-pile | |
| dataset (Azerbayev et al., 2022). | |
| We use the test splits of PG19 (Rae et al., 2020) and proof-pile (Azerbayev et al., 2022). For PG19, | |
| we use the whole test split consisting of 100 documents. For the proof-pile dataset, we use a random | |
| subsample of 128 documents with at least 32768 SentencePiece (Kudo & Richardson, 2018) tokens | |
| and truncate to the first 32768 tokens for each test document. We evaluate perplexity at various | |
| context window size by using a sliding window approach following Press et al. (2022) with stride | |
| S = 256. | |
| In Table 1 and Table 2, we report the perplexity results for our models and baselines on the datasets. | |
| From the results, we found that models extended with our method enjoy a significantly improved | |
| perplexity from longer context window sizes. By increasing the context window size from 2048 to | |
| 16384, we observed -0.28 and -0.5 reductions of perplexity for extending LLaMA 7B models on | |
| both datasets, -0.27 and -0.48 reductions for extending LL.aMA 13B models, and -0.14 and -0.42 | |
| reductions for extending LLaMA 33B models. For LLaMA 65B models, we observed -0.12 and | |
| -0.3 reductions of perplexity by extending to the 8192 context window size. | |
| In general, we observed a consistent trend of our models achieving better perplexity with longer | |
| context windows. This indicates our models can effectively make use of the longer context windows | |
| to better predict next tokens in language modeling tasks. Moreover, we found this trend extends to | |
| 32768 window size without diminishing on the PG19 dataset for LLaMA 7B and 13B models. This | |
| indicates that our method may enable extension to even longer context windows. | |
| In contrast, we observed that models extended via the direct fine-tuning method has shown regres- | |
| sion (up to +0.48) or minor improvement (up to -0.12) on the perplexity at longer context windows. | |
| This indicates that models extended this way have limited capability of making use of context win- | |
| dows longer than their pre-trained settings. | |
| We saw a minor degradation of the perplexity on the original context window of 2048 for our ex- | |
| tended models in some cases. For example, on the Proof-pile dataset, we saw a degradation ranging | |
| from 0.01 to 0.05 across all models with extended with Position Interpolation. A small degradation | |
| of performance within original evaluation context window is expected since Position Interpolation | |
| forces position encodings in original context window to reside in a much narrower region, which | |
| may negatively affect the language model’s performance. We present more benchmark results on | |
| the original context window size in Section 3.4. | |
| In Table 3 we report the relationship between perplexity and the number of fine-tuning steps for | |
| LLaMA 7B model extending to 8192 and 16384 context window sizes using Position Interpolation | |
| evaluated on the PG19 dataset. We can see without fine-tuning (at step 0) the model can exhibit | |
| certain language modeling capability, as indicated by < 20 perplexity for extending to 8192 context | |
| window (in contrast, the direct extrapolation method leads to > 10% perplexity). With fine-tuning, | |
| we observed that the perplexity improves quickly. At 200 steps the models surpassed the original | |
| model’s perplexity on 2048 context window size, indicating the models gaining ability of effectively | |
| using sequences longer than the pre-training settings for language modeling. At 1000 steps, we can | |
| see the models have improved steadily and achieve a significantly better perplexity. | |
| 3.3 MEASURING EFFECTIVE CONTEXT WINDOW SIZE THROUGH PASSKEY RETRIEVAL | |
| We study the effective context window size, i.e. the maximum distance of a token can effectively | |
| attend to during inference, of our models after extension. To measure this, we follow a synthetic | |
| evaluation task of passkey retrieval proposed by Mohtashami & Jaggi (2023). In this task, the models | |
| are asked to recover a random passkey hidden in a long document. See Figure 3 for the format of | |
| the document. | |
| Given a language model, we estimate the upper and lower bounds of effective context windows as | |
| follows. Suppose the random passkey is k tokens away from the end of the input. When a model | |
| persistently fails to retrieve the correct passkey value across several independent attempts, it suggests | |
| that the effective context window size of the model is less than k. Conversely, if a model consistently | |
| succeeds in retrieving the correct passkey value, we deduce that the effective context window size | |
| of the model is at least k. | |
| We evaluate the 7B and 33B LLaMA model variants that are extended via Position Interpolation or | |
| direct fine-tuning. For each model, we use 32 different &£ uniformly spaced in the targeted context | |
| window L’ and run the above tests for 10 times for each k, where each time a random passkey of 5 | |
| random digits is used. In Table 4, we report kyax as a function of the number of fine-tuning steps, | |
| We can see that models extended via Position Interpolation all successfully attain their desired ex- | |
| tension objectives in terms of effective context window sizes, indicating by the effective context | |
| window size reaching maximum kp, = L/, after merely fine-tuning for 200 steps, consistently | |
| across both 7B and 33B model sizes and up to 32768 context windows. In contrast, LLLaMA models | |
| that are extended via direct fine-tuning only saw a minimal increase of the effective context win- | |
| dow size kay from 2048 to 2560, even after fine-tuning for more than 10000 steps, with no clear | |
| indication of an acceleration in the increase of window size. | |
| 3.4 BENCHMARKS ON ORIGINAL CONTEXT WINDOW SIZE | |
| We evaluate the models extended by Position Interpolation on several standard benchmark tasks | |
| within the original context window size of 2048. The evaluation results are listed in Table 5. From | |
| the results, we saw that models extended to 8192 produce comparable results on the original bench- | |
| mark which is designed for a much smaller context window, with a degradation of up to 2% on | |
| the benchmark tasks, for both 7B and 33B model sizes. Models extended to longer context win- | |
| dows regressed more on the benchmarks, but still in reasonable ranges for most tasks. We also note | |
| that the choice of fine-tuning datasets does not seem to lead significant difference in the benchmark | |
| performances, which may be due to the limited number of fine-tuning steps used in our method. | |
| The regression on benchmark tasks is consistent with our observation on perplexity regression in | |
| Section 3.2. | |
| 3.5 LONG DOCUMENT SUMMARIZATION | |
| In this task, we evaluate our models’ performance on the long document summarization task. In | |
| particular, we consider the GovReport (Huang et al., 2021) dataset, which contains 17457 documents | |
| for training and 972 documents for evaluation. Each document comes with a human generated | |
| summary. We truncate all input documents to their first 15000 tokens. | |
| We fine-tune the LL.aMA models extended with Position Interpolation with a context window of | |
| 16384. Note the rescaling of position indices are still required during this fine-tuning step. We first | |
| Model Size Context Window Fine-tune on BoolQ PIQA Race-M Race-H WinoGrande | |
| format the raw document using the prompt template in Figure 4, and then concatenate the prompt | |
| with the ground-truth summary (truncate to 1000 tokens) associated with each document. We fine- | |
| tune the model using the next token prediction task with the above setup for 10 epochs. The losses | |
| from the input prompt proportion of training examples are excluded during our fine-tuning. | |
| We use a generation temperature of 0.5 and top, = 0.95 as our inference parameter to generate a | |
| summarization of each document in the test set. The final output is truncated at 1000 tokens. We | |
| used the ROUGE-1/ROUGE-2/ROUGE-L scores (Lin, 2004) as the evaluation metrics to evaluate | |
| the models’ outputs vs the ground-truth summaries. | |
| In Table 6 we report our evaluation results. We have also included results from two baselines in | |
| existing SCROLLS Leaderboard (Shaham et al., 2022; Ainslie et al., 2023). In general, we have | |
| obtained competitive R1 score among other models with minimal tuning of hyper-parameters. This | |
| result suggests our models with 16384 context window can effectively handle the long document | |
| summarization task. | |
| === END OF FILE === | |
| ''' | |
| question = "Question: What's the title of this paper?" # Something from the beginning | |
| inputs = tokenizer(prompt + question, return_tensors="pt").to("cuda") | |
| print(inputs.input_ids.shape) | |
| assert inputs.input_ids.shape[1] > 6200, "input not long enough" | |
| gen_out = model.generate(**inputs, max_new_tokens=100) | |
| response = tokenizer.batch_decode(gen_out)[0] | |
| response = response.replace(prompt + question, "") # only keep response | |
| assert len(response) < 500, "response must be less than 100 tokens" | |
| print(response) | |
| if rope_scaling is None: | |
| assert 'Extending Context Window of Large' not in response | |
| assert 'Extending Context Window of Large'.upper() not in response | |
| else: | |
| assert ('Extending Context Window of Large' in response or | |
| 'Extending Context Window of Large'.upper() in response) | |