Spaces:
Paused
Paused
| import ast | |
| import os | |
| import subprocess | |
| import time | |
| import pytest | |
| from tests.test_inference_servers import run_h2ogpt_docker | |
| from tests.utils import wrap_test_forked, get_inf_server, get_inf_port | |
| from src.utils import download_simple | |
| results_file = "./benchmarks/perf.json" | |
| def test_perf_benchmarks(backend, base_model, task, bits, ngpus): | |
| reps = 3 | |
| bench_dict = locals() | |
| from datetime import datetime | |
| import json | |
| import socket | |
| os.environ['CUDA_VISIBLE_DEVICES'] = "" if ngpus == 0 else "0" if ngpus == 1 else ",".join([str(x) for x in range(ngpus)]) | |
| import torch | |
| n_gpus = torch.cuda.device_count() | |
| if n_gpus != ngpus: | |
| return | |
| git_sha = ( | |
| subprocess.check_output("git rev-parse HEAD", shell=True) | |
| .decode("utf-8") | |
| .strip() | |
| ) | |
| bench_dict["date"] = datetime.now().strftime("%m/%d/%Y %H:%M:%S") | |
| bench_dict["git_sha"] = git_sha[:8] | |
| bench_dict["n_gpus"] = n_gpus | |
| from importlib.metadata import version | |
| bench_dict["transformers"] = str(version('transformers')) | |
| bench_dict["bitsandbytes"] = str(version('bitsandbytes')) | |
| bench_dict["cuda"] = str(torch.version.cuda) | |
| bench_dict["hostname"] = str(socket.gethostname()) | |
| gpu_list = [torch.cuda.get_device_name(i) for i in range(n_gpus)] | |
| # get GPU memory, assumes homogeneous system | |
| cmd = 'nvidia-smi -i 0 -q | grep -A 1 "FB Memory Usage" | cut -d: -f2 | tail -n 1' | |
| o = subprocess.check_output(cmd, shell=True, timeout=15) | |
| mem_gpu = o.decode("utf-8").splitlines()[0].strip() if n_gpus else 0 | |
| bench_dict["gpus"] = "%d x %s (%s)" % (n_gpus, gpu_list[0], mem_gpu) if n_gpus else "CPU" | |
| assert all([x == gpu_list[0] for x in gpu_list]) | |
| print(bench_dict) | |
| # launch server(s) | |
| docker_hash1 = None | |
| docker_hash2 = None | |
| max_new_tokens = 4096 | |
| try: | |
| h2ogpt_args = dict(base_model=base_model, | |
| chat=True, gradio=True, num_beams=1, block_gradio_exit=False, verbose=True, | |
| load_half=bits == 16 and n_gpus, | |
| load_8bit=bits == 8, | |
| load_4bit=bits == 4, | |
| langchain_mode='MyData', | |
| use_auth_token=True, | |
| max_new_tokens=max_new_tokens, | |
| use_gpu_id=ngpus == 1, | |
| use_safetensors=True, | |
| score_model=None, | |
| ) | |
| if backend == 'transformers': | |
| from src.gen import main | |
| main(**h2ogpt_args) | |
| elif backend == 'text-generation-inference': | |
| if bits != 16: | |
| return | |
| from tests.test_inference_servers import run_docker | |
| # HF inference server | |
| gradio_port = get_inf_port() | |
| inf_port = gradio_port + 1 | |
| inference_server = 'http://127.0.0.1:%s' % inf_port | |
| docker_hash1 = run_docker(inf_port, base_model, low_mem_mode=False) # don't do low-mem, since need tokens for summary | |
| os.system('docker logs %s | tail -10' % docker_hash1) | |
| # h2oGPT server | |
| docker_hash2 = run_h2ogpt_docker(gradio_port, base_model, inference_server=inference_server, max_new_tokens=max_new_tokens) | |
| time.sleep(30) # assumes image already downloaded, else need more time | |
| os.system('docker logs %s | tail -10' % docker_hash2) | |
| elif backend == 'text-generation-inference-': | |
| if bits != 16: | |
| return | |
| from tests.test_inference_servers import run_docker | |
| # HF inference server | |
| gradio_port = get_inf_port() | |
| inf_port = gradio_port + 1 | |
| inference_server = 'http://127.0.0.1:%s' % inf_port | |
| docker_hash1 = run_docker(inf_port, base_model, low_mem_mode=False) # don't do low-mem, since need tokens for summary | |
| from src.gen import main | |
| main(**h2ogpt_args) | |
| else: | |
| raise NotImplementedError("backend %s not implemented" % backend) | |
| # get file for client to upload | |
| url = 'https://cdn.openai.com/papers/whisper.pdf' | |
| test_file1 = os.path.join('/tmp/', 'my_test_pdf.pdf') | |
| download_simple(url, dest=test_file1) | |
| # PURE client code | |
| from gradio_client import Client | |
| client = Client(get_inf_server()) | |
| if "summary" in task: | |
| # upload file(s). Can be list or single file | |
| test_file_local, test_file_server = client.predict(test_file1, api_name='/upload_api') | |
| assert os.path.normpath(test_file_local) != os.path.normpath(test_file_server) | |
| chunk = True | |
| chunk_size = 512 | |
| langchain_mode = 'MyData' | |
| embed = True | |
| loaders = tuple([None, None, None, None]) | |
| h2ogpt_key = '' | |
| res = client.predict(test_file_server, | |
| chunk, chunk_size, langchain_mode, embed, | |
| *loaders, | |
| h2ogpt_key, | |
| api_name='/add_file_api') | |
| assert res[0] is None | |
| assert res[1] == langchain_mode | |
| # assert os.path.basename(test_file_server) in res[2] | |
| assert res[3] == '' | |
| # ask for summary, need to use same client if using MyData | |
| api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing | |
| kwargs = dict(langchain_mode=langchain_mode, | |
| langchain_action="Summarize", # uses full document, not vectorDB chunks | |
| top_k_docs=4, # -1 == entire pdf | |
| document_subset='Relevant', | |
| document_choice='All', | |
| max_new_tokens=max_new_tokens, | |
| max_time=300, | |
| do_sample=False, | |
| prompt_summary='Summarize into single paragraph', | |
| system_prompt='', | |
| ) | |
| t0 = time.time() | |
| for r in range(reps): | |
| res = client.predict( | |
| str(dict(kwargs)), | |
| api_name=api_name, | |
| ) | |
| t1 = time.time() | |
| time_taken = (t1 - t0) / reps | |
| res = ast.literal_eval(res) | |
| response = res['response'] | |
| sources = res['sources'] | |
| size_summary = os.path.getsize(test_file1) | |
| # print(response) | |
| print("Time to summarize %s bytes into %s bytes: %.4f" % (size_summary, len(response), time_taken)) | |
| bench_dict["summarize_input_len_bytes"] = size_summary | |
| bench_dict["summarize_output_len_bytes"] = len(response) | |
| bench_dict["summarize_time"] = time_taken | |
| # bench_dict["summarize_tokens_per_sec"] = res['tokens/s'] | |
| assert 'my_test_pdf.pdf' in sources | |
| if "generate" in task: | |
| api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing | |
| kwargs = dict(prompt_summary="Write a poem about water.") | |
| t0 = time.time() | |
| for r in range(reps): | |
| res = client.predict( | |
| str(dict(kwargs)), | |
| api_name=api_name, | |
| ) | |
| t1 = time.time() | |
| time_taken = (t1 - t0) / reps | |
| res = ast.literal_eval(res) | |
| response = res['response'] | |
| # print(response) | |
| print("Time to generate %s bytes: %.4f" % (len(response), time_taken)) | |
| bench_dict["generate_output_len_bytes"] = len(response) | |
| bench_dict["generate_time"] = time_taken | |
| # bench_dict["generate_tokens_per_sec"] = res['tokens/s'] | |
| except BaseException as e: | |
| if 'CUDA out of memory' in str(e): | |
| e = "OOM" | |
| bench_dict["exception"] = str(e) | |
| else: | |
| raise | |
| finally: | |
| if bench_dict["backend"] == "text-generation-inference-": | |
| # Fixup, so appears as same | |
| bench_dict["backend"] = "text-generation-inference" | |
| if 'summarize_time' in bench_dict or 'generate_time' in bench_dict or bench_dict.get('exception') == "OOM": | |
| with open(results_file, mode="a") as f: | |
| f.write(json.dumps(bench_dict) + "\n") | |
| if "text-generation-inference" in backend: | |
| if docker_hash1: | |
| os.system("docker stop %s" % docker_hash1) | |
| if docker_hash2: | |
| os.system("docker stop %s" % docker_hash2) | |
| def test_plot_results(): | |
| import pandas as pd | |
| import json | |
| res = [] | |
| with open(results_file) as f: | |
| for line in f.readlines(): | |
| entry = json.loads(line) | |
| res.append(entry) | |
| X = pd.DataFrame(res) | |
| X.to_csv(results_file + ".csv", index=False) | |
| result_cols = ['summarization time [sec]', 'generation speed [tokens/sec]'] | |
| X[result_cols[0]] = X['summarize_time'] | |
| X[result_cols[1]] = X['generate_output_len_bytes'] / 4 / X['generate_time'] | |
| with open(results_file.replace(".json", ".md"), "w") as f: | |
| for backend in pd.unique(X['backend']): | |
| print("# Backend: %s" % backend, file=f) | |
| for base_model in pd.unique(X['base_model']): | |
| print("## Model: %s (%s)" % (base_model, backend), file=f) | |
| for n_gpus in sorted(pd.unique(X['n_gpus'])): | |
| XX = X[(X['base_model'] == base_model) & (X['backend'] == backend) & (X['n_gpus'] == n_gpus)] | |
| if XX.shape[0] == 0: | |
| continue | |
| print("### Number of GPUs: %s" % n_gpus, file=f) | |
| XX.drop_duplicates(subset=['bits', 'gpus'], keep='last', inplace=True) | |
| XX = XX.sort_values(['bits', result_cols[1]], ascending=[False, False]) | |
| XX['exception'] = XX['exception'].astype(str).replace("nan", "") | |
| print(XX[['bits', 'gpus', result_cols[0], result_cols[1], 'exception']].to_markdown(index=False), file=f) | |