Spaces:
Running
Running
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from langchain_community.chat_models import ChatOpenAI | |
| from langchain.chains.retrieval_qa.base import RetrievalQA | |
| from langchain_community.embeddings import OpenAIEmbeddings | |
| from langchain.schema import HumanMessage, SystemMessage | |
| from langchain_community.document_loaders import DirectoryLoader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
| from langchain_community.embeddings import OpenAIEmbeddings | |
| from langchain_community.vectorstores import Chroma | |
| import requests | |
| from langchain_core.prompts import PromptTemplate | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| import gradio as gr | |
| from openai import OpenAI | |
| import os | |
| TOKEN = os.getenv("HF_TOKEN") | |
| def load_embedding_mode(): | |
| # embedding_model_dict = {"m3e-base": "/home/xiongwen/m3e-base"} | |
| encode_kwargs = {"normalize_embeddings": False} | |
| model_kwargs = {"device": 'cpu'} | |
| return HuggingFaceEmbeddings(model_name="BAAI/bge-m3", | |
| model_kwargs=model_kwargs, | |
| encode_kwargs=encode_kwargs) | |
| client = OpenAI( | |
| base_url="https://router.huggingface.co/v1/", | |
| api_key=TOKEN, | |
| ) | |
| # client = InferenceClient( | |
| # provider="hf-inference", | |
| # api_key=os.environ["HF_TOKEN"], | |
| # ) | |
| def qwen_api(user_message, top_p=0.9,temperature=0.7, system_message='', max_tokens=1024, gradio_history=[]): | |
| history = [] | |
| if gradio_history: | |
| for message in history: | |
| if message: | |
| history.append({"role": "user", "content": message[0]}) | |
| history.append({"role": "assistant", "content": message[1]}) | |
| if system_message!='': | |
| history.append({'role': 'system', 'content': system_message}) | |
| history.append({"role": "user", "content": user_message}) | |
| response = "" | |
| for message in client.chat.completions.create( | |
| # model="meta-llama/Meta-Llama-3-8B-Instruct", | |
| model="Qwen/Qwen1.5-4B-Chat", | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| messages=history, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| return response | |
| # os.environ["OPENAI_API_BASE"] = "https://api-inference.huggingface.co/v1/" | |
| os.environ["OPENAI_API_BASE"] = "https://router.huggingface.co/v1/" | |
| os.environ["OPENAI_API_KEY"] = TOKEN | |
| embedding = load_embedding_mode() | |
| db = Chroma(persist_directory='./VecterStore2_512_txt/VecterStore2_512_txt', embedding_function=embedding) | |
| prompt_template = """ | |
| {context} | |
| The above content is a form of biological background knowledge. Please answer the questions according to the above content. | |
| Question: {question} | |
| Please be sure to answer the questions according to the background knowledge and attach the doi number of the information source when answering. | |
| Answer in English:""" | |
| PROMPT = PromptTemplate( | |
| template=prompt_template, input_variables=["context", "question"] | |
| ) | |
| chain_type_kwargs = {"prompt": PROMPT} | |
| retriever = db.as_retriever() | |
| def langchain_chat(message, temperature, top_p, max_tokens): | |
| llm = ChatOpenAI( | |
| model="meta-llama/Meta-Llama-3-8B-Instruct", | |
| # model="Qwen/Qwen1.5-4B-Chat", | |
| temperature=temperature, | |
| top_p=top_p, | |
| max_tokens=max_tokens) | |
| qa = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=retriever, | |
| chain_type_kwargs=chain_type_kwargs, | |
| return_source_documents=True | |
| ) | |
| response = qa.invoke(message)['result'] | |
| return response | |
| def chat( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| if len(history) == 0: | |
| response = langchain_chat(message, temperature, top_p, max_tokens) | |
| else: | |
| response = qwen_api(message, gradio_history=history, max_tokens=max_tokens, top_p=top_p, temperature=temperature) | |
| print(response) | |
| yield response | |
| return response | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat.completions.create( | |
| model="meta-llama/Meta-Llama-3-8B-Instruct", | |
| # model="Qwen/Qwen1.5-4B-Chat", | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| messages=messages, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| chatbot = gr.Chatbot(height=600) | |
| demo = gr.ChatInterface( | |
| fn=chat, | |
| fill_height=True, | |
| chatbot=chatbot, | |
| additional_inputs=[ | |
| gr.Textbox(label="System message"), | |
| gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |