Spaces:
Sleeping
Sleeping
Alex
commited on
Commit
·
2017254
1
Parent(s):
a72a723
error
Browse files- app.py +188 -272
- leaderboard_data.json +23 -0
- src/about.py +0 -91
- src/api_submit_results.py +0 -116
- src/display/css_html_js.py +0 -105
- src/display/formatting.py +0 -27
- src/display/utils.py +0 -116
- src/envs.py +0 -25
- src/leaderboard/read_evals.py +0 -199
- src/populate.py +0 -102
- src/submission/check_validity.py +0 -99
- src/submission/submit.py +0 -248
app.py
CHANGED
|
@@ -1,276 +1,192 @@
|
|
| 1 |
-
import
|
| 2 |
-
from
|
| 3 |
-
import
|
| 4 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
-
from huggingface_hub import snapshot_download
|
| 6 |
-
from fastapi import FastAPI
|
| 7 |
-
from src.api_submit_results import router as submission_router
|
| 8 |
-
|
| 9 |
-
from src.about import (
|
| 10 |
-
CITATION_BUTTON_LABEL,
|
| 11 |
-
CITATION_BUTTON_TEXT,
|
| 12 |
-
EVALUATION_QUEUE_TEXT,
|
| 13 |
-
INTRODUCTION_TEXT,
|
| 14 |
-
LLM_BENCHMARKS_TEXT,
|
| 15 |
-
TITLE,
|
| 16 |
-
)
|
| 17 |
-
from src.display.css_html_js import custom_css
|
| 18 |
-
from src.display.utils import (
|
| 19 |
-
BENCHMARK_COLS,
|
| 20 |
-
COLS,
|
| 21 |
-
EVAL_COLS,
|
| 22 |
-
EVAL_TYPES,
|
| 23 |
-
AutoEvalColumn,
|
| 24 |
-
ModelType,
|
| 25 |
-
fields,
|
| 26 |
-
WeightType,
|
| 27 |
-
Precision
|
| 28 |
-
)
|
| 29 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 30 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 31 |
-
from src.submission.submit import add_new_eval, add_manual_results
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def restart_space():
|
| 35 |
-
API.restart_space(repo_id=REPO_ID)
|
| 36 |
-
|
| 37 |
-
### Space initialisation
|
| 38 |
-
try:
|
| 39 |
-
print(EVAL_REQUESTS_PATH)
|
| 40 |
-
snapshot_download(
|
| 41 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 42 |
-
)
|
| 43 |
-
except Exception:
|
| 44 |
-
restart_space()
|
| 45 |
-
try:
|
| 46 |
-
print(EVAL_RESULTS_PATH)
|
| 47 |
-
snapshot_download(
|
| 48 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 49 |
-
)
|
| 50 |
-
except Exception:
|
| 51 |
-
restart_space()
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
interactive=False,
|
| 91 |
)
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
with
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
datatype=EVAL_TYPES,
|
| 144 |
-
row_count=5,
|
| 145 |
-
)
|
| 146 |
-
with gr.Row():
|
| 147 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 148 |
-
|
| 149 |
-
with gr.Row():
|
| 150 |
-
with gr.Column():
|
| 151 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 152 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 153 |
-
model_type = gr.Dropdown(
|
| 154 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 155 |
-
label="Model type",
|
| 156 |
-
multiselect=False,
|
| 157 |
-
value=None,
|
| 158 |
-
interactive=True,
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
with gr.Column():
|
| 162 |
-
precision = gr.Dropdown(
|
| 163 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 164 |
-
label="Precision",
|
| 165 |
-
multiselect=False,
|
| 166 |
-
value="float16",
|
| 167 |
-
interactive=True,
|
| 168 |
-
)
|
| 169 |
-
weight_type = gr.Dropdown(
|
| 170 |
-
choices=[i.value.name for i in WeightType],
|
| 171 |
-
label="Weights type",
|
| 172 |
-
multiselect=False,
|
| 173 |
-
value="Original",
|
| 174 |
-
interactive=True,
|
| 175 |
-
)
|
| 176 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 177 |
-
|
| 178 |
-
submit_button = gr.Button("Submit Eval")
|
| 179 |
-
submission_result = gr.Markdown()
|
| 180 |
-
submit_button.click(
|
| 181 |
-
add_new_eval,
|
| 182 |
-
[
|
| 183 |
-
model_name_textbox,
|
| 184 |
-
base_model_name_textbox,
|
| 185 |
-
revision_name_textbox,
|
| 186 |
-
precision,
|
| 187 |
-
weight_type,
|
| 188 |
-
model_type,
|
| 189 |
-
],
|
| 190 |
-
submission_result,
|
| 191 |
-
)
|
| 192 |
-
|
| 193 |
-
# ----------------------------------------------------
|
| 194 |
-
# Manual metrics submission form
|
| 195 |
-
# ----------------------------------------------------
|
| 196 |
-
gr.Markdown("## 📝 Submit metrics manually (advanced)")
|
| 197 |
-
|
| 198 |
-
with gr.Row():
|
| 199 |
-
with gr.Column():
|
| 200 |
-
model_name_metrics = gr.Textbox(label="Model name", placeholder="org/model")
|
| 201 |
-
revision_metrics = gr.Textbox(label="Revision commit", placeholder="main", value="main")
|
| 202 |
-
bleu_input = gr.Number(label="BLEU", value=0.5)
|
| 203 |
-
pass1_input = gr.Number(label="Pass@1", value=0.5, minimum=0.0, maximum=1.0)
|
| 204 |
-
pass5_input = gr.Number(label="Pass@5", value=0.5, minimum=0.0, maximum=1.0)
|
| 205 |
-
pass10_input = gr.Number(label="Pass@10", value=0.5, minimum=0.0, maximum=1.0)
|
| 206 |
-
|
| 207 |
-
with gr.Column():
|
| 208 |
-
# Subjective metrics sliders (0-5)
|
| 209 |
-
readability_slider = gr.Slider(0, 5, step=1, value=3, label="Readability")
|
| 210 |
-
relevance_slider = gr.Slider(0, 5, step=1, value=3, label="Relevance")
|
| 211 |
-
explanation_slider = gr.Slider(0, 5, step=1, value=3, label="Explanation clarity")
|
| 212 |
-
problem_slider = gr.Slider(0, 5, step=1, value=3, label="Problem identification")
|
| 213 |
-
actionability_slider = gr.Slider(0, 5, step=1, value=3, label="Actionability")
|
| 214 |
-
completeness_slider = gr.Slider(0, 5, step=1, value=3, label="Completeness")
|
| 215 |
-
specificity_slider = gr.Slider(0, 5, step=1, value=3, label="Specificity")
|
| 216 |
-
contextual_slider = gr.Slider(0, 5, step=1, value=3, label="Contextual adequacy")
|
| 217 |
-
consistency_slider = gr.Slider(0, 5, step=1, value=3, label="Consistency")
|
| 218 |
-
brevity_slider = gr.Slider(0, 5, step=1, value=3, label="Brevity")
|
| 219 |
-
|
| 220 |
-
submit_metrics_button = gr.Button("Submit Metrics")
|
| 221 |
-
metrics_submission_result = gr.Markdown()
|
| 222 |
-
|
| 223 |
-
submit_metrics_button.click(
|
| 224 |
-
add_manual_results,
|
| 225 |
-
[
|
| 226 |
-
model_name_metrics,
|
| 227 |
-
revision_metrics,
|
| 228 |
-
bleu_input,
|
| 229 |
-
readability_slider,
|
| 230 |
-
relevance_slider,
|
| 231 |
-
explanation_slider,
|
| 232 |
-
problem_slider,
|
| 233 |
-
actionability_slider,
|
| 234 |
-
completeness_slider,
|
| 235 |
-
specificity_slider,
|
| 236 |
-
contextual_slider,
|
| 237 |
-
consistency_slider,
|
| 238 |
-
brevity_slider,
|
| 239 |
-
pass1_input,
|
| 240 |
-
pass5_input,
|
| 241 |
-
pass10_input,
|
| 242 |
-
],
|
| 243 |
-
metrics_submission_result,
|
| 244 |
-
)
|
| 245 |
-
|
| 246 |
-
with gr.Row():
|
| 247 |
-
with gr.Accordion("📙 Citation", open=False):
|
| 248 |
-
citation_button = gr.Textbox(
|
| 249 |
-
value=CITATION_BUTTON_TEXT,
|
| 250 |
-
label=CITATION_BUTTON_LABEL,
|
| 251 |
-
lines=20,
|
| 252 |
-
elem_id="citation-button",
|
| 253 |
-
show_copy_button=True,
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
# ------------------------------
|
| 257 |
-
# Start background scheduler
|
| 258 |
-
# ------------------------------
|
| 259 |
-
scheduler = BackgroundScheduler()
|
| 260 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 261 |
-
scheduler.start()
|
| 262 |
-
|
| 263 |
-
# ------------------------------
|
| 264 |
-
# Mount Gradio UI into FastAPI application
|
| 265 |
-
# ------------------------------
|
| 266 |
-
# Removed direct .launch(); Gradio UI will be served via the mounted FastAPI `app`.
|
| 267 |
-
|
| 268 |
-
# ------------------ FastAPI mounting ------------------
|
| 269 |
-
backend = FastAPI()
|
| 270 |
-
backend.include_router(submission_router)
|
| 271 |
-
|
| 272 |
-
# Enable queuing (same limit as before)
|
| 273 |
-
demo = demo.queue(default_concurrency_limit=40)
|
| 274 |
-
|
| 275 |
-
# Expose `app` for the HF Spaces runtime
|
| 276 |
-
app = gr.mount_gradio_app(backend, demo, path="/")
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import List, Dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from pydantic import BaseModel, Field, validator
|
| 7 |
+
|
| 8 |
+
# --------------- Configuration ---------------
|
| 9 |
+
LEADERBOARD_PATH = Path("leaderboard_data.json")
|
| 10 |
+
DEFAULT_MODEL_NAME = "example/model"
|
| 11 |
+
|
| 12 |
+
# --------------- Data models ---------------
|
| 13 |
+
class Metrics(BaseModel):
|
| 14 |
+
readability: float
|
| 15 |
+
relevance: float
|
| 16 |
+
explanation_clarity: float = Field(alias="explanation_clarity")
|
| 17 |
+
problem_identification: float
|
| 18 |
+
actionability: float
|
| 19 |
+
completeness: float
|
| 20 |
+
specificity: float
|
| 21 |
+
contextual_adequacy: float
|
| 22 |
+
consistency: float
|
| 23 |
+
brevity: float
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class LeaderboardEntry(BaseModel):
|
| 27 |
+
model_name: str
|
| 28 |
+
bleu: float
|
| 29 |
+
llm_pass_1: float
|
| 30 |
+
llm_pass_5: float
|
| 31 |
+
llm_pass_10: float
|
| 32 |
+
metrics: Metrics
|
| 33 |
+
|
| 34 |
+
@validator("bleu", "llm_pass_1", "llm_pass_5", "llm_pass_10", each_item=True)
|
| 35 |
+
def score_range(cls, v: float):
|
| 36 |
+
if not 0.0 <= v <= 1.0:
|
| 37 |
+
raise ValueError("Scores should be between 0 and 1")
|
| 38 |
+
return v
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# --------------- Persistence helpers ---------------
|
| 42 |
+
|
| 43 |
+
def _load_leaderboard() -> List[Dict]:
|
| 44 |
+
if not LEADERBOARD_PATH.exists():
|
| 45 |
+
return []
|
| 46 |
+
with LEADERBOARD_PATH.open("r", encoding="utf-8") as f:
|
| 47 |
+
data = json.load(f)
|
| 48 |
+
return data.get("leaderboard", [])
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def _save_leaderboard(data: List[Dict]):
|
| 52 |
+
to_store = {"leaderboard": data}
|
| 53 |
+
with LEADERBOARD_PATH.open("w", encoding="utf-8") as f:
|
| 54 |
+
json.dump(to_store, f, indent=2)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# --------------- Utility ---------------
|
| 58 |
+
|
| 59 |
+
def _flatten_entry(entry: Dict) -> Dict:
|
| 60 |
+
"""Flatten nested metrics so that every metric is a column."""
|
| 61 |
+
flat = {
|
| 62 |
+
"Model": entry["model_name"],
|
| 63 |
+
"BLEU": entry["bleu"],
|
| 64 |
+
"Pass@1": entry["llm_pass_1"],
|
| 65 |
+
"Pass@5": entry["llm_pass_5"],
|
| 66 |
+
"Pass@10": entry["llm_pass_10"],
|
| 67 |
+
}
|
| 68 |
+
for metric_name, score in entry["metrics"].items():
|
| 69 |
+
flat[metric_name.replace("_", " ").title()] = score
|
| 70 |
+
return flat
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def _table_data() -> List[Dict]:
|
| 74 |
+
data = _load_leaderboard()
|
| 75 |
+
# Sort descending by pass@1 as requested
|
| 76 |
+
data.sort(key=lambda x: x["llm_pass_1"], reverse=True)
|
| 77 |
+
return [_flatten_entry(e) for e in data]
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# --------------- Gradio callbacks ---------------
|
| 81 |
+
|
| 82 |
+
def submit_model(
|
| 83 |
+
model_name: str,
|
| 84 |
+
bleu: float,
|
| 85 |
+
llm_pass_1: float,
|
| 86 |
+
llm_pass_5: float,
|
| 87 |
+
llm_pass_10: float,
|
| 88 |
+
readability: float,
|
| 89 |
+
relevance: float,
|
| 90 |
+
explanation_clarity: float,
|
| 91 |
+
problem_identification: float,
|
| 92 |
+
actionability: float,
|
| 93 |
+
completeness: float,
|
| 94 |
+
specificity: float,
|
| 95 |
+
contextual_adequacy: float,
|
| 96 |
+
consistency: float,
|
| 97 |
+
brevity: float,
|
| 98 |
+
):
|
| 99 |
+
"""Validate and append a new model entry to the leaderboard."""
|
| 100 |
+
try:
|
| 101 |
+
entry = LeaderboardEntry(
|
| 102 |
+
model_name=model_name.strip(),
|
| 103 |
+
bleu=bleu,
|
| 104 |
+
llm_pass_1=llm_pass_1,
|
| 105 |
+
llm_pass_5=llm_pass_5,
|
| 106 |
+
llm_pass_10=llm_pass_10,
|
| 107 |
+
metrics={
|
| 108 |
+
"readability": readability,
|
| 109 |
+
"relevance": relevance,
|
| 110 |
+
"explanation_clarity": explanation_clarity,
|
| 111 |
+
"problem_identification": problem_identification,
|
| 112 |
+
"actionability": actionability,
|
| 113 |
+
"completeness": completeness,
|
| 114 |
+
"specificity": specificity,
|
| 115 |
+
"contextual_adequacy": contextual_adequacy,
|
| 116 |
+
"consistency": consistency,
|
| 117 |
+
"brevity": brevity,
|
| 118 |
+
},
|
| 119 |
+
)
|
| 120 |
+
except Exception as e:
|
| 121 |
+
return gr.update(value=_table_data()), gr.update(value=f"❌ Submission failed: {e}")
|
| 122 |
+
|
| 123 |
+
data = _load_leaderboard()
|
| 124 |
+
# Replace existing model entry if any
|
| 125 |
+
data = [d for d in data if d["model_name"] != entry.model_name]
|
| 126 |
+
data.append(entry.dict())
|
| 127 |
+
_save_leaderboard(data)
|
| 128 |
+
|
| 129 |
+
return gr.update(value=_table_data()), gr.update(value="✅ Submission recorded!")
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# --------------- Interface ---------------
|
| 133 |
+
with gr.Blocks(title="Custom LLM Leaderboard") as demo:
|
| 134 |
+
gr.Markdown("""# 🏆 LLM Leaderboard\nSubmit your model results below. Leaderboard is sorted by **Pass@1**. """)
|
| 135 |
+
|
| 136 |
+
leaderboard_df = gr.Dataframe(
|
| 137 |
+
headers=list(_table_data()[0].keys()) if _table_data() else [],
|
| 138 |
+
value=_table_data(),
|
| 139 |
+
label="Current Leaderboard",
|
| 140 |
interactive=False,
|
| 141 |
)
|
| 142 |
|
| 143 |
+
gr.Markdown("## 🔄 Submit new model results")
|
| 144 |
+
|
| 145 |
+
with gr.Accordion("Submission form", open=False):
|
| 146 |
+
with gr.Row():
|
| 147 |
+
model_name_inp = gr.Text(label="Model name (org/model)", value="")
|
| 148 |
+
bleu_inp = gr.Number(label="BLEU", value=0.0, minimum=0.0, maximum=1.0)
|
| 149 |
+
pass1_inp = gr.Number(label="Pass@1", value=0.0, minimum=0.0, maximum=1.0)
|
| 150 |
+
pass5_inp = gr.Number(label="Pass@5", value=0.0, minimum=0.0, maximum=1.0)
|
| 151 |
+
pass10_inp = gr.Number(label="Pass@10", value=0.0, minimum=0.0, maximum=1.0)
|
| 152 |
+
|
| 153 |
+
gr.Markdown("### Multi-metric subjective scores (0.0 – 1.0)")
|
| 154 |
+
with gr.Row():
|
| 155 |
+
readability_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Readability")
|
| 156 |
+
relevance_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Relevance")
|
| 157 |
+
explanation_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Explanation Clarity")
|
| 158 |
+
problem_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Problem Identification")
|
| 159 |
+
actionability_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Actionability")
|
| 160 |
+
completeness_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Completeness")
|
| 161 |
+
specificity_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Specificity")
|
| 162 |
+
contextual_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Contextual Adequacy")
|
| 163 |
+
consistency_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Consistency")
|
| 164 |
+
brevity_inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Brevity")
|
| 165 |
+
|
| 166 |
+
submit_btn = gr.Button("Submit")
|
| 167 |
+
status_markdown = gr.Markdown("")
|
| 168 |
+
|
| 169 |
+
submit_btn.click(
|
| 170 |
+
fn=submit_model,
|
| 171 |
+
inputs=[
|
| 172 |
+
model_name_inp,
|
| 173 |
+
bleu_inp,
|
| 174 |
+
pass1_inp,
|
| 175 |
+
pass5_inp,
|
| 176 |
+
pass10_inp,
|
| 177 |
+
readability_inp,
|
| 178 |
+
relevance_inp,
|
| 179 |
+
explanation_inp,
|
| 180 |
+
problem_inp,
|
| 181 |
+
actionability_inp,
|
| 182 |
+
completeness_inp,
|
| 183 |
+
specificity_inp,
|
| 184 |
+
contextual_inp,
|
| 185 |
+
consistency_inp,
|
| 186 |
+
brevity_inp,
|
| 187 |
+
],
|
| 188 |
+
outputs=[leaderboard_df, status_markdown],
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# Expose app variable for Spaces
|
| 192 |
+
app = demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
leaderboard_data.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"leaderboard": [
|
| 3 |
+
{
|
| 4 |
+
"model_name": "example/model",
|
| 5 |
+
"bleu": 0.5,
|
| 6 |
+
"llm_pass_1": 0.5,
|
| 7 |
+
"llm_pass_5": 0.5,
|
| 8 |
+
"llm_pass_10": 0.5,
|
| 9 |
+
"metrics": {
|
| 10 |
+
"readability": 0.5,
|
| 11 |
+
"relevance": 0.5,
|
| 12 |
+
"explanation_clarity": 0.5,
|
| 13 |
+
"problem_identification": 0.5,
|
| 14 |
+
"actionability": 0.5,
|
| 15 |
+
"completeness": 0.5,
|
| 16 |
+
"specificity": 0.5,
|
| 17 |
+
"contextual_adequacy": 0.5,
|
| 18 |
+
"consistency": 0.5,
|
| 19 |
+
"brevity": 0.5
|
| 20 |
+
}
|
| 21 |
+
}
|
| 22 |
+
]
|
| 23 |
+
}
|
src/about.py
DELETED
|
@@ -1,91 +0,0 @@
|
|
| 1 |
-
from dataclasses import dataclass
|
| 2 |
-
from enum import Enum
|
| 3 |
-
|
| 4 |
-
@dataclass
|
| 5 |
-
class Task:
|
| 6 |
-
benchmark: str
|
| 7 |
-
metric: str
|
| 8 |
-
col_name: str
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# Select your metrics here
|
| 12 |
-
# ---------------------------------------------------
|
| 13 |
-
# Each entry: first argument is the key inside "results" dict in the result JSON,
|
| 14 |
-
# second is the metric key inside that sub-dict (we use "score" everywhere for uniformity),
|
| 15 |
-
# third is the column name displayed in the leaderboard.
|
| 16 |
-
|
| 17 |
-
class Tasks(Enum):
|
| 18 |
-
bleu = Task("bleu", "score", "BLEU ⬆️")
|
| 19 |
-
multimetric = Task("multimetric", "score", "Multimetric ⬆️")
|
| 20 |
-
|
| 21 |
-
readability = Task("readability", "score", "Readability")
|
| 22 |
-
relevance = Task("relevance", "score", "Relevance")
|
| 23 |
-
explanation_clarity = Task("explanation_clarity", "score", "Explanation clarity")
|
| 24 |
-
problem_identification = Task("problem_identification", "score", "Problem identification")
|
| 25 |
-
actionability = Task("actionability", "score", "Actionability")
|
| 26 |
-
completeness = Task("completeness", "score", "Completeness")
|
| 27 |
-
specificity = Task("specificity", "score", "Specificity")
|
| 28 |
-
contextual_adequacy = Task("contextual_adequacy", "score", "Contextual adequacy")
|
| 29 |
-
consistency = Task("consistency", "score", "Consistency")
|
| 30 |
-
brevity = Task("brevity", "score", "Brevity")
|
| 31 |
-
|
| 32 |
-
pass_at_1 = Task("pass_at_1", "score", "Pass@1 ⬆️")
|
| 33 |
-
pass_at_5 = Task("pass_at_5", "score", "Pass@5")
|
| 34 |
-
pass_at_10 = Task("pass_at_10", "score", "Pass@10")
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
NUM_FEWSHOT = 0 # Not applicable here but kept for compatibility
|
| 38 |
-
# ---------------------------------------------------
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# Your leaderboard name
|
| 43 |
-
TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
|
| 44 |
-
|
| 45 |
-
# What does your leaderboard evaluate?
|
| 46 |
-
INTRODUCTION_TEXT = """
|
| 47 |
-
Intro text
|
| 48 |
-
"""
|
| 49 |
-
|
| 50 |
-
# Which evaluations are you running? how can people reproduce what you have?
|
| 51 |
-
LLM_BENCHMARKS_TEXT = f"""
|
| 52 |
-
## How it works
|
| 53 |
-
|
| 54 |
-
## Reproducibility
|
| 55 |
-
To reproduce our results, here is the commands you can run:
|
| 56 |
-
|
| 57 |
-
"""
|
| 58 |
-
|
| 59 |
-
EVALUATION_QUEUE_TEXT = """
|
| 60 |
-
## Some good practices before submitting a model
|
| 61 |
-
|
| 62 |
-
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
| 63 |
-
```python
|
| 64 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 65 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
| 66 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
| 67 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
| 68 |
-
```
|
| 69 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
| 70 |
-
|
| 71 |
-
Note: make sure your model is public!
|
| 72 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
| 73 |
-
|
| 74 |
-
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
| 75 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
| 76 |
-
|
| 77 |
-
### 3) Make sure your model has an open license!
|
| 78 |
-
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
| 79 |
-
|
| 80 |
-
### 4) Fill up your model card
|
| 81 |
-
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
| 82 |
-
|
| 83 |
-
## In case of model failure
|
| 84 |
-
If your model is displayed in the `FAILED` category, its execution stopped.
|
| 85 |
-
Make sure you have followed the above steps first.
|
| 86 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
| 87 |
-
"""
|
| 88 |
-
|
| 89 |
-
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 90 |
-
CITATION_BUTTON_TEXT = r"""
|
| 91 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/api_submit_results.py
DELETED
|
@@ -1,116 +0,0 @@
|
|
| 1 |
-
from datetime import datetime, timezone
|
| 2 |
-
import json
|
| 3 |
-
import os
|
| 4 |
-
import uuid
|
| 5 |
-
|
| 6 |
-
from fastapi import APIRouter, HTTPException
|
| 7 |
-
from pydantic import BaseModel, Field, validator
|
| 8 |
-
|
| 9 |
-
from src.envs import API, RESULTS_REPO, EVAL_RESULTS_PATH, TOKEN
|
| 10 |
-
|
| 11 |
-
router = APIRouter(prefix="/api", tags=["submission"])
|
| 12 |
-
|
| 13 |
-
ALL_SUBJECTIVE_FIELDS = [
|
| 14 |
-
"readability",
|
| 15 |
-
"relevance",
|
| 16 |
-
"explanation_clarity",
|
| 17 |
-
"problem_identification",
|
| 18 |
-
"actionability",
|
| 19 |
-
"completeness",
|
| 20 |
-
"specificity",
|
| 21 |
-
"contextual_adequacy",
|
| 22 |
-
"consistency",
|
| 23 |
-
"brevity",
|
| 24 |
-
]
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
class ResultPayload(BaseModel):
|
| 28 |
-
model: str = Field(..., description="Model id on the Hub (e.g. org/model)")
|
| 29 |
-
revision: str = Field("main", description="Commit sha or branch (default: main)")
|
| 30 |
-
bleu: float = Field(..., ge=0, description="BLEU score (0-100)")
|
| 31 |
-
|
| 32 |
-
# 10 subjective metrics 0-5
|
| 33 |
-
readability: int = Field(..., ge=0, le=5)
|
| 34 |
-
relevance: int = Field(..., ge=0, le=5)
|
| 35 |
-
explanation_clarity: int = Field(..., ge=0, le=5)
|
| 36 |
-
problem_identification: int = Field(..., ge=0, le=5)
|
| 37 |
-
actionability: int = Field(..., ge=0, le=5)
|
| 38 |
-
completeness: int = Field(..., ge=0, le=5)
|
| 39 |
-
specificity: int = Field(..., ge=0, le=5)
|
| 40 |
-
contextual_adequacy: int = Field(..., ge=0, le=5)
|
| 41 |
-
consistency: int = Field(..., ge=0, le=5)
|
| 42 |
-
brevity: int = Field(..., ge=0, le=5)
|
| 43 |
-
|
| 44 |
-
pass_at_1: float = Field(..., ge=0, le=1)
|
| 45 |
-
pass_at_5: float = Field(..., ge=0, le=1)
|
| 46 |
-
pass_at_10: float = Field(..., ge=0, le=1)
|
| 47 |
-
|
| 48 |
-
@validator("pass_at_5")
|
| 49 |
-
def _p5_ge_p1(cls, v, values):
|
| 50 |
-
if "pass_at_1" in values and v < values["pass_at_1"]:
|
| 51 |
-
raise ValueError("pass@5 must be >= pass@1")
|
| 52 |
-
return v
|
| 53 |
-
|
| 54 |
-
@validator("pass_at_10")
|
| 55 |
-
def _p10_ge_p5(cls, v, values):
|
| 56 |
-
if "pass_at_5" in values and v < values["pass_at_5"]:
|
| 57 |
-
raise ValueError("pass@10 must be >= pass@5")
|
| 58 |
-
return v
|
| 59 |
-
|
| 60 |
-
def multimetric(self) -> float:
|
| 61 |
-
total = sum(getattr(self, f) for f in ALL_SUBJECTIVE_FIELDS)
|
| 62 |
-
return float(total) / len(ALL_SUBJECTIVE_FIELDS)
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
@router.post("/submit", status_code=200)
|
| 66 |
-
async def submit_results(payload: ResultPayload):
|
| 67 |
-
"""Accept new evaluation results and push them to the results dataset."""
|
| 68 |
-
|
| 69 |
-
# Prepare JSON in expected format (compatible with read_evals.py)
|
| 70 |
-
results_dict = {
|
| 71 |
-
"config": {
|
| 72 |
-
"model_dtype": "unknown",
|
| 73 |
-
"model_name": payload.model,
|
| 74 |
-
"model_sha": payload.revision,
|
| 75 |
-
},
|
| 76 |
-
"results": {},
|
| 77 |
-
}
|
| 78 |
-
|
| 79 |
-
# Primary metrics
|
| 80 |
-
results_dict["results"]["bleu"] = {"score": payload.bleu}
|
| 81 |
-
results_dict["results"]["multimetric"] = {"score": payload.multimetric()}
|
| 82 |
-
|
| 83 |
-
# Subjective metrics
|
| 84 |
-
for field in ALL_SUBJECTIVE_FIELDS:
|
| 85 |
-
results_dict["results"][field] = {"score": getattr(payload, field)}
|
| 86 |
-
|
| 87 |
-
# Pass@k metrics
|
| 88 |
-
results_dict["results"]["pass_at_1"] = {"score": payload.pass_at_1}
|
| 89 |
-
results_dict["results"]["pass_at_5"] = {"score": payload.pass_at_5}
|
| 90 |
-
results_dict["results"]["pass_at_10"] = {"score": payload.pass_at_10}
|
| 91 |
-
|
| 92 |
-
# File handling
|
| 93 |
-
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
| 94 |
-
ts = datetime.now(timezone.utc).strftime("%Y%m%dT%H%M%SZ")
|
| 95 |
-
unique_id = uuid.uuid4().hex[:8]
|
| 96 |
-
filename = f"results_{payload.model.replace('/', '_')}_{ts}_{unique_id}.json"
|
| 97 |
-
local_path = os.path.join(EVAL_RESULTS_PATH, filename)
|
| 98 |
-
|
| 99 |
-
with open(local_path, "w") as fp:
|
| 100 |
-
json.dump(results_dict, fp)
|
| 101 |
-
|
| 102 |
-
try:
|
| 103 |
-
API.upload_file(
|
| 104 |
-
path_or_fileobj=local_path,
|
| 105 |
-
path_in_repo=filename,
|
| 106 |
-
repo_id=RESULTS_REPO,
|
| 107 |
-
repo_type="dataset",
|
| 108 |
-
commit_message=f"Add results for {payload.model}",
|
| 109 |
-
)
|
| 110 |
-
except Exception as e:
|
| 111 |
-
raise HTTPException(status_code=500, detail=f"Failed to upload results: {e}")
|
| 112 |
-
finally:
|
| 113 |
-
if os.path.exists(local_path):
|
| 114 |
-
os.remove(local_path)
|
| 115 |
-
|
| 116 |
-
return {"status": "ok", "detail": "Results submitted."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/css_html_js.py
DELETED
|
@@ -1,105 +0,0 @@
|
|
| 1 |
-
custom_css = """
|
| 2 |
-
|
| 3 |
-
.markdown-text {
|
| 4 |
-
font-size: 16px !important;
|
| 5 |
-
}
|
| 6 |
-
|
| 7 |
-
#models-to-add-text {
|
| 8 |
-
font-size: 18px !important;
|
| 9 |
-
}
|
| 10 |
-
|
| 11 |
-
#citation-button span {
|
| 12 |
-
font-size: 16px !important;
|
| 13 |
-
}
|
| 14 |
-
|
| 15 |
-
#citation-button textarea {
|
| 16 |
-
font-size: 16px !important;
|
| 17 |
-
}
|
| 18 |
-
|
| 19 |
-
#citation-button > label > button {
|
| 20 |
-
margin: 6px;
|
| 21 |
-
transform: scale(1.3);
|
| 22 |
-
}
|
| 23 |
-
|
| 24 |
-
#leaderboard-table {
|
| 25 |
-
margin-top: 15px
|
| 26 |
-
}
|
| 27 |
-
|
| 28 |
-
#leaderboard-table-lite {
|
| 29 |
-
margin-top: 15px
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
#search-bar-table-box > div:first-child {
|
| 33 |
-
background: none;
|
| 34 |
-
border: none;
|
| 35 |
-
}
|
| 36 |
-
|
| 37 |
-
#search-bar {
|
| 38 |
-
padding: 0px;
|
| 39 |
-
}
|
| 40 |
-
|
| 41 |
-
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
| 42 |
-
#leaderboard-table td:nth-child(2),
|
| 43 |
-
#leaderboard-table th:nth-child(2) {
|
| 44 |
-
max-width: 400px;
|
| 45 |
-
overflow: auto;
|
| 46 |
-
white-space: nowrap;
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
.tab-buttons button {
|
| 50 |
-
font-size: 20px;
|
| 51 |
-
}
|
| 52 |
-
|
| 53 |
-
#scale-logo {
|
| 54 |
-
border-style: none !important;
|
| 55 |
-
box-shadow: none;
|
| 56 |
-
display: block;
|
| 57 |
-
margin-left: auto;
|
| 58 |
-
margin-right: auto;
|
| 59 |
-
max-width: 600px;
|
| 60 |
-
}
|
| 61 |
-
|
| 62 |
-
#scale-logo .download {
|
| 63 |
-
display: none;
|
| 64 |
-
}
|
| 65 |
-
#filter_type{
|
| 66 |
-
border: 0;
|
| 67 |
-
padding-left: 0;
|
| 68 |
-
padding-top: 0;
|
| 69 |
-
}
|
| 70 |
-
#filter_type label {
|
| 71 |
-
display: flex;
|
| 72 |
-
}
|
| 73 |
-
#filter_type label > span{
|
| 74 |
-
margin-top: var(--spacing-lg);
|
| 75 |
-
margin-right: 0.5em;
|
| 76 |
-
}
|
| 77 |
-
#filter_type label > .wrap{
|
| 78 |
-
width: 103px;
|
| 79 |
-
}
|
| 80 |
-
#filter_type label > .wrap .wrap-inner{
|
| 81 |
-
padding: 2px;
|
| 82 |
-
}
|
| 83 |
-
#filter_type label > .wrap .wrap-inner input{
|
| 84 |
-
width: 1px
|
| 85 |
-
}
|
| 86 |
-
#filter-columns-type{
|
| 87 |
-
border:0;
|
| 88 |
-
padding:0.5;
|
| 89 |
-
}
|
| 90 |
-
#filter-columns-size{
|
| 91 |
-
border:0;
|
| 92 |
-
padding:0.5;
|
| 93 |
-
}
|
| 94 |
-
#box-filter > .form{
|
| 95 |
-
border: 0
|
| 96 |
-
}
|
| 97 |
-
"""
|
| 98 |
-
|
| 99 |
-
get_window_url_params = """
|
| 100 |
-
function(url_params) {
|
| 101 |
-
const params = new URLSearchParams(window.location.search);
|
| 102 |
-
url_params = Object.fromEntries(params);
|
| 103 |
-
return url_params;
|
| 104 |
-
}
|
| 105 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/formatting.py
DELETED
|
@@ -1,27 +0,0 @@
|
|
| 1 |
-
def model_hyperlink(link, model_name):
|
| 2 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
def make_clickable_model(model_name):
|
| 6 |
-
link = f"https://huggingface.co/{model_name}"
|
| 7 |
-
return model_hyperlink(link, model_name)
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def styled_error(error):
|
| 11 |
-
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def styled_warning(warn):
|
| 15 |
-
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def styled_message(message):
|
| 19 |
-
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def has_no_nan_values(df, columns):
|
| 23 |
-
return df[columns].notna().all(axis=1)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def has_nan_values(df, columns):
|
| 27 |
-
return df[columns].isna().any(axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/utils.py
DELETED
|
@@ -1,116 +0,0 @@
|
|
| 1 |
-
from dataclasses import dataclass, make_dataclass
|
| 2 |
-
from enum import Enum
|
| 3 |
-
|
| 4 |
-
import pandas as pd
|
| 5 |
-
|
| 6 |
-
from src.about import Tasks
|
| 7 |
-
|
| 8 |
-
def fields(raw_class):
|
| 9 |
-
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
# These classes are for user facing column names,
|
| 13 |
-
# to avoid having to change them all around the code
|
| 14 |
-
# when a modif is needed
|
| 15 |
-
@dataclass
|
| 16 |
-
class ColumnContent:
|
| 17 |
-
name: str
|
| 18 |
-
type: str
|
| 19 |
-
displayed_by_default: bool
|
| 20 |
-
hidden: bool = False
|
| 21 |
-
never_hidden: bool = False
|
| 22 |
-
|
| 23 |
-
## Leaderboard columns
|
| 24 |
-
auto_eval_column_dict = []
|
| 25 |
-
# Init
|
| 26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 27 |
-
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 28 |
-
# Average kept but not displayed by default
|
| 29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", False)])
|
| 30 |
-
|
| 31 |
-
# Determine which metrics are visible by default
|
| 32 |
-
_DEFAULT_VISIBLE = {"bleu", "multimetric", "pass_at_1", "pass_at_5", "pass_at_10"}
|
| 33 |
-
|
| 34 |
-
for task in Tasks:
|
| 35 |
-
show = task.name in _DEFAULT_VISIBLE
|
| 36 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", show)])
|
| 37 |
-
|
| 38 |
-
# Model information
|
| 39 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 40 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 41 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 42 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 43 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 44 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 45 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 46 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 47 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 48 |
-
|
| 49 |
-
# We use make dataclass to dynamically fill the scores from Tasks
|
| 50 |
-
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 51 |
-
|
| 52 |
-
## For the queue columns in the submission tab
|
| 53 |
-
@dataclass(frozen=True)
|
| 54 |
-
class EvalQueueColumn: # Queue column
|
| 55 |
-
model = ColumnContent("model", "markdown", True)
|
| 56 |
-
revision = ColumnContent("revision", "str", True)
|
| 57 |
-
private = ColumnContent("private", "bool", True)
|
| 58 |
-
precision = ColumnContent("precision", "str", True)
|
| 59 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 60 |
-
status = ColumnContent("status", "str", True)
|
| 61 |
-
|
| 62 |
-
## All the model information that we might need
|
| 63 |
-
@dataclass
|
| 64 |
-
class ModelDetails:
|
| 65 |
-
name: str
|
| 66 |
-
display_name: str = ""
|
| 67 |
-
symbol: str = "" # emoji
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
class ModelType(Enum):
|
| 71 |
-
PT = ModelDetails(name="pretrained", symbol="🟢")
|
| 72 |
-
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
| 73 |
-
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
| 74 |
-
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
| 75 |
-
Unknown = ModelDetails(name="", symbol="?")
|
| 76 |
-
|
| 77 |
-
def to_str(self, separator=" "):
|
| 78 |
-
return f"{self.value.symbol}{separator}{self.value.name}"
|
| 79 |
-
|
| 80 |
-
@staticmethod
|
| 81 |
-
def from_str(type):
|
| 82 |
-
if "fine-tuned" in type or "🔶" in type:
|
| 83 |
-
return ModelType.FT
|
| 84 |
-
if "pretrained" in type or "🟢" in type:
|
| 85 |
-
return ModelType.PT
|
| 86 |
-
if "RL-tuned" in type or "🟦" in type:
|
| 87 |
-
return ModelType.RL
|
| 88 |
-
if "instruction-tuned" in type or "⭕" in type:
|
| 89 |
-
return ModelType.IFT
|
| 90 |
-
return ModelType.Unknown
|
| 91 |
-
|
| 92 |
-
class WeightType(Enum):
|
| 93 |
-
Adapter = ModelDetails("Adapter")
|
| 94 |
-
Original = ModelDetails("Original")
|
| 95 |
-
Delta = ModelDetails("Delta")
|
| 96 |
-
|
| 97 |
-
class Precision(Enum):
|
| 98 |
-
float16 = ModelDetails("float16")
|
| 99 |
-
bfloat16 = ModelDetails("bfloat16")
|
| 100 |
-
Unknown = ModelDetails("?")
|
| 101 |
-
|
| 102 |
-
def from_str(precision):
|
| 103 |
-
if precision in ["torch.float16", "float16"]:
|
| 104 |
-
return Precision.float16
|
| 105 |
-
if precision in ["torch.bfloat16", "bfloat16"]:
|
| 106 |
-
return Precision.bfloat16
|
| 107 |
-
return Precision.Unknown
|
| 108 |
-
|
| 109 |
-
# Column selection
|
| 110 |
-
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 111 |
-
|
| 112 |
-
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
| 113 |
-
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 114 |
-
|
| 115 |
-
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/envs.py
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
from huggingface_hub import HfApi
|
| 4 |
-
|
| 5 |
-
# Info to change for your repository
|
| 6 |
-
# ----------------------------------
|
| 7 |
-
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
| 8 |
-
|
| 9 |
-
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
| 10 |
-
# ----------------------------------
|
| 11 |
-
|
| 12 |
-
REPO_ID = f"{OWNER}/leaderboard"
|
| 13 |
-
QUEUE_REPO = f"{OWNER}/requests"
|
| 14 |
-
RESULTS_REPO = f"{OWNER}/results"
|
| 15 |
-
|
| 16 |
-
# If you setup a cache later, just change HF_HOME
|
| 17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
| 18 |
-
|
| 19 |
-
# Local caches
|
| 20 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
| 21 |
-
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
| 22 |
-
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
| 23 |
-
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 24 |
-
|
| 25 |
-
API = HfApi(token=TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/leaderboard/read_evals.py
DELETED
|
@@ -1,199 +0,0 @@
|
|
| 1 |
-
import glob
|
| 2 |
-
import json
|
| 3 |
-
import math
|
| 4 |
-
import os
|
| 5 |
-
from dataclasses import dataclass
|
| 6 |
-
|
| 7 |
-
import dateutil
|
| 8 |
-
import numpy as np
|
| 9 |
-
|
| 10 |
-
from src.display.formatting import make_clickable_model
|
| 11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
| 12 |
-
from src.submission.check_validity import is_model_on_hub
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
@dataclass
|
| 16 |
-
class EvalResult:
|
| 17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
| 18 |
-
"""
|
| 19 |
-
eval_name: str # org_model_precision (uid)
|
| 20 |
-
full_model: str # org/model (path on hub)
|
| 21 |
-
org: str
|
| 22 |
-
model: str
|
| 23 |
-
revision: str # commit hash, "" if main
|
| 24 |
-
results: dict
|
| 25 |
-
precision: Precision = Precision.Unknown
|
| 26 |
-
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 27 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 28 |
-
architecture: str = "Unknown"
|
| 29 |
-
license: str = "?"
|
| 30 |
-
likes: int = 0
|
| 31 |
-
num_params: int = 0
|
| 32 |
-
date: str = "" # submission date of request file
|
| 33 |
-
still_on_hub: bool = False
|
| 34 |
-
|
| 35 |
-
@classmethod
|
| 36 |
-
def init_from_json_file(self, json_filepath):
|
| 37 |
-
"""Inits the result from the specific model result file"""
|
| 38 |
-
with open(json_filepath) as fp:
|
| 39 |
-
data = json.load(fp)
|
| 40 |
-
|
| 41 |
-
config = data.get("config")
|
| 42 |
-
|
| 43 |
-
# Precision
|
| 44 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
| 45 |
-
|
| 46 |
-
# Get model and org
|
| 47 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
| 48 |
-
org_and_model = org_and_model.split("/", 1)
|
| 49 |
-
|
| 50 |
-
if len(org_and_model) == 1:
|
| 51 |
-
org = None
|
| 52 |
-
model = org_and_model[0]
|
| 53 |
-
result_key = f"{model}_{precision.value.name}"
|
| 54 |
-
else:
|
| 55 |
-
org = org_and_model[0]
|
| 56 |
-
model = org_and_model[1]
|
| 57 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
| 58 |
-
full_model = "/".join(org_and_model)
|
| 59 |
-
|
| 60 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
| 61 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
| 62 |
-
)
|
| 63 |
-
architecture = "?"
|
| 64 |
-
if model_config is not None:
|
| 65 |
-
architectures = getattr(model_config, "architectures", None)
|
| 66 |
-
if architectures:
|
| 67 |
-
architecture = ";".join(architectures)
|
| 68 |
-
|
| 69 |
-
# Extract results available in this file (some results are split in several files)
|
| 70 |
-
results = {}
|
| 71 |
-
for task in Tasks:
|
| 72 |
-
task = task.value
|
| 73 |
-
|
| 74 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
| 75 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
| 76 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 77 |
-
continue
|
| 78 |
-
|
| 79 |
-
if task.metric == "score":
|
| 80 |
-
mean_acc = float(np.mean(accs))
|
| 81 |
-
else:
|
| 82 |
-
mean_acc = float(np.mean(accs) * 100.0)
|
| 83 |
-
results[task.benchmark] = mean_acc
|
| 84 |
-
|
| 85 |
-
return self(
|
| 86 |
-
eval_name=result_key,
|
| 87 |
-
full_model=full_model,
|
| 88 |
-
org=org,
|
| 89 |
-
model=model,
|
| 90 |
-
results=results,
|
| 91 |
-
precision=precision,
|
| 92 |
-
revision= config.get("model_sha", ""),
|
| 93 |
-
still_on_hub=still_on_hub,
|
| 94 |
-
architecture=architecture
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
def update_with_request_file(self, requests_path):
|
| 98 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
| 99 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
| 100 |
-
|
| 101 |
-
try:
|
| 102 |
-
with open(request_file, "r") as f:
|
| 103 |
-
request = json.load(f)
|
| 104 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
| 105 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 106 |
-
self.license = request.get("license", "?")
|
| 107 |
-
self.likes = request.get("likes", 0)
|
| 108 |
-
self.num_params = request.get("params", 0)
|
| 109 |
-
self.date = request.get("submitted_time", "")
|
| 110 |
-
except Exception:
|
| 111 |
-
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
| 112 |
-
|
| 113 |
-
def to_dict(self):
|
| 114 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 115 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
| 116 |
-
data_dict = {
|
| 117 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
| 118 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 119 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 120 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 121 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 122 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
| 123 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 124 |
-
AutoEvalColumn.revision.name: self.revision,
|
| 125 |
-
AutoEvalColumn.average.name: average,
|
| 126 |
-
AutoEvalColumn.license.name: self.license,
|
| 127 |
-
AutoEvalColumn.likes.name: self.likes,
|
| 128 |
-
AutoEvalColumn.params.name: self.num_params,
|
| 129 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 130 |
-
}
|
| 131 |
-
|
| 132 |
-
for task in Tasks:
|
| 133 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 134 |
-
|
| 135 |
-
return data_dict
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
| 139 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
| 140 |
-
request_files = os.path.join(
|
| 141 |
-
requests_path,
|
| 142 |
-
f"{model_name}_eval_request_*.json",
|
| 143 |
-
)
|
| 144 |
-
request_files = glob.glob(request_files)
|
| 145 |
-
|
| 146 |
-
# Select correct request file (precision)
|
| 147 |
-
request_file = ""
|
| 148 |
-
request_files = sorted(request_files, reverse=True)
|
| 149 |
-
for tmp_request_file in request_files:
|
| 150 |
-
with open(tmp_request_file, "r") as f:
|
| 151 |
-
req_content = json.load(f)
|
| 152 |
-
if (
|
| 153 |
-
req_content["status"] in ["FINISHED"]
|
| 154 |
-
and req_content["precision"] == precision.split(".")[-1]
|
| 155 |
-
):
|
| 156 |
-
request_file = tmp_request_file
|
| 157 |
-
return request_file
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
| 161 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
| 162 |
-
model_result_filepaths = []
|
| 163 |
-
|
| 164 |
-
for root, _, files in os.walk(results_path):
|
| 165 |
-
# We should only have json files in model results
|
| 166 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
| 167 |
-
continue
|
| 168 |
-
|
| 169 |
-
# Sort the files by date
|
| 170 |
-
try:
|
| 171 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
| 172 |
-
except dateutil.parser._parser.ParserError:
|
| 173 |
-
files = [files[-1]]
|
| 174 |
-
|
| 175 |
-
for file in files:
|
| 176 |
-
model_result_filepaths.append(os.path.join(root, file))
|
| 177 |
-
|
| 178 |
-
eval_results = {}
|
| 179 |
-
for model_result_filepath in model_result_filepaths:
|
| 180 |
-
# Creation of result
|
| 181 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
| 182 |
-
eval_result.update_with_request_file(requests_path)
|
| 183 |
-
|
| 184 |
-
# Store results of same eval together
|
| 185 |
-
eval_name = eval_result.eval_name
|
| 186 |
-
if eval_name in eval_results.keys():
|
| 187 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
| 188 |
-
else:
|
| 189 |
-
eval_results[eval_name] = eval_result
|
| 190 |
-
|
| 191 |
-
results = []
|
| 192 |
-
for v in eval_results.values():
|
| 193 |
-
try:
|
| 194 |
-
v.to_dict() # we test if the dict version is complete
|
| 195 |
-
results.append(v)
|
| 196 |
-
except KeyError: # not all eval values present
|
| 197 |
-
continue
|
| 198 |
-
|
| 199 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
DELETED
|
@@ -1,102 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
|
| 4 |
-
import pandas as pd
|
| 5 |
-
|
| 6 |
-
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 8 |
-
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 12 |
-
"""Creates a dataframe from all the individual experiment results"""
|
| 13 |
-
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 14 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
| 15 |
-
|
| 16 |
-
df = pd.DataFrame.from_records(all_data_json)
|
| 17 |
-
|
| 18 |
-
# ------------------------------------------------------------------
|
| 19 |
-
# Fallback: if no evaluation results are found we populate the
|
| 20 |
-
# leaderboard with a single example model. This guarantees that a
|
| 21 |
-
# freshly deployed Space shows a non-empty leaderboard and it serves
|
| 22 |
-
# as a template for the expected columns/values.
|
| 23 |
-
# ------------------------------------------------------------------
|
| 24 |
-
if df.empty:
|
| 25 |
-
example_row = {}
|
| 26 |
-
|
| 27 |
-
# Populate benchmark metrics with the default value 0.5 using internal column names
|
| 28 |
-
for metric in benchmark_cols:
|
| 29 |
-
example_row[metric] = 0.5
|
| 30 |
-
|
| 31 |
-
# Minimal metadata so that the row displays nicely
|
| 32 |
-
example_row[AutoEvalColumn.model.name] = make_clickable_model("example/model")
|
| 33 |
-
example_row[AutoEvalColumn.average.name] = 0.5
|
| 34 |
-
example_row[AutoEvalColumn.model_type_symbol.name] = "🟢"
|
| 35 |
-
example_row[AutoEvalColumn.model_type.name] = "pretrained"
|
| 36 |
-
example_row[AutoEvalColumn.precision.name] = "float16"
|
| 37 |
-
example_row[AutoEvalColumn.weight_type.name] = "Original"
|
| 38 |
-
example_row[AutoEvalColumn.still_on_hub.name] = True
|
| 39 |
-
example_row[AutoEvalColumn.architecture.name] = "Transformer"
|
| 40 |
-
example_row[AutoEvalColumn.revision.name] = "main"
|
| 41 |
-
example_row[AutoEvalColumn.license.name] = "apache-2.0"
|
| 42 |
-
|
| 43 |
-
# Any missing columns will be created later in the function
|
| 44 |
-
df = pd.DataFrame([example_row])
|
| 45 |
-
|
| 46 |
-
# Sort primarily by LLM exact-match Pass@1 metric; if not present, fall back to average
|
| 47 |
-
preferred_cols = []
|
| 48 |
-
if hasattr(AutoEvalColumn, "pass_at_1"):
|
| 49 |
-
preferred_cols.append(AutoEvalColumn.pass_at_1.name)
|
| 50 |
-
preferred_cols.append(AutoEvalColumn.average.name)
|
| 51 |
-
|
| 52 |
-
for col in preferred_cols:
|
| 53 |
-
if col in df.columns:
|
| 54 |
-
df = df.sort_values(by=[col], ascending=False)
|
| 55 |
-
break
|
| 56 |
-
|
| 57 |
-
# Ensure all expected columns exist, add missing ones with NaN so selection does not fail
|
| 58 |
-
for expected in cols:
|
| 59 |
-
if expected not in df.columns:
|
| 60 |
-
df[expected] = pd.NA
|
| 61 |
-
|
| 62 |
-
df = df[cols].round(decimals=2)
|
| 63 |
-
|
| 64 |
-
# filter out if any of the benchmarks have not been produced
|
| 65 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 66 |
-
return df
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
| 70 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
| 71 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
| 72 |
-
all_evals = []
|
| 73 |
-
|
| 74 |
-
for entry in entries:
|
| 75 |
-
if ".json" in entry:
|
| 76 |
-
file_path = os.path.join(save_path, entry)
|
| 77 |
-
with open(file_path) as fp:
|
| 78 |
-
data = json.load(fp)
|
| 79 |
-
|
| 80 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 81 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 82 |
-
|
| 83 |
-
all_evals.append(data)
|
| 84 |
-
elif ".md" not in entry:
|
| 85 |
-
# this is a folder
|
| 86 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
|
| 87 |
-
for sub_entry in sub_entries:
|
| 88 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
| 89 |
-
with open(file_path) as fp:
|
| 90 |
-
data = json.load(fp)
|
| 91 |
-
|
| 92 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 93 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 94 |
-
all_evals.append(data)
|
| 95 |
-
|
| 96 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 97 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 98 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
| 99 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 100 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 101 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
| 102 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/check_validity.py
DELETED
|
@@ -1,99 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
import re
|
| 4 |
-
from collections import defaultdict
|
| 5 |
-
from datetime import datetime, timedelta, timezone
|
| 6 |
-
|
| 7 |
-
import huggingface_hub
|
| 8 |
-
from huggingface_hub import ModelCard
|
| 9 |
-
from huggingface_hub.hf_api import ModelInfo
|
| 10 |
-
from transformers import AutoConfig
|
| 11 |
-
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
| 12 |
-
|
| 13 |
-
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
| 14 |
-
"""Checks if the model card and license exist and have been filled"""
|
| 15 |
-
try:
|
| 16 |
-
card = ModelCard.load(repo_id)
|
| 17 |
-
except huggingface_hub.utils.EntryNotFoundError:
|
| 18 |
-
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
| 19 |
-
|
| 20 |
-
# Enforce license metadata
|
| 21 |
-
if card.data.license is None:
|
| 22 |
-
if not ("license_name" in card.data and "license_link" in card.data):
|
| 23 |
-
return False, (
|
| 24 |
-
"License not found. Please add a license to your model card using the `license` metadata or a"
|
| 25 |
-
" `license_name`/`license_link` pair."
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
# Enforce card content
|
| 29 |
-
if len(card.text) < 200:
|
| 30 |
-
return False, "Please add a description to your model card, it is too short."
|
| 31 |
-
|
| 32 |
-
return True, ""
|
| 33 |
-
|
| 34 |
-
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
| 35 |
-
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
| 36 |
-
try:
|
| 37 |
-
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
| 38 |
-
if test_tokenizer:
|
| 39 |
-
try:
|
| 40 |
-
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
| 41 |
-
except ValueError as e:
|
| 42 |
-
return (
|
| 43 |
-
False,
|
| 44 |
-
f"uses a tokenizer which is not in a transformers release: {e}",
|
| 45 |
-
None
|
| 46 |
-
)
|
| 47 |
-
except Exception as e:
|
| 48 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
| 49 |
-
return True, None, config
|
| 50 |
-
|
| 51 |
-
except ValueError:
|
| 52 |
-
return (
|
| 53 |
-
False,
|
| 54 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
| 55 |
-
None
|
| 56 |
-
)
|
| 57 |
-
|
| 58 |
-
except Exception as e:
|
| 59 |
-
return False, "was not found on hub!", None
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
| 63 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
| 64 |
-
try:
|
| 65 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
| 66 |
-
except (AttributeError, TypeError):
|
| 67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
| 68 |
-
|
| 69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
| 70 |
-
model_size = size_factor * model_size
|
| 71 |
-
return model_size
|
| 72 |
-
|
| 73 |
-
def get_model_arch(model_info: ModelInfo):
|
| 74 |
-
"""Gets the model architecture from the configuration"""
|
| 75 |
-
return model_info.config.get("architectures", "Unknown")
|
| 76 |
-
|
| 77 |
-
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
| 78 |
-
"""Gather a list of already submitted models to avoid duplicates"""
|
| 79 |
-
depth = 1
|
| 80 |
-
file_names = []
|
| 81 |
-
users_to_submission_dates = defaultdict(list)
|
| 82 |
-
|
| 83 |
-
for root, _, files in os.walk(requested_models_dir):
|
| 84 |
-
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
| 85 |
-
if current_depth == depth:
|
| 86 |
-
for file in files:
|
| 87 |
-
if not file.endswith(".json"):
|
| 88 |
-
continue
|
| 89 |
-
with open(os.path.join(root, file), "r") as f:
|
| 90 |
-
info = json.load(f)
|
| 91 |
-
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
| 92 |
-
|
| 93 |
-
# Select organisation
|
| 94 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
| 95 |
-
continue
|
| 96 |
-
organisation, _ = info["model"].split("/")
|
| 97 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
| 98 |
-
|
| 99 |
-
return set(file_names), users_to_submission_dates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/submit.py
DELETED
|
@@ -1,248 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
from datetime import datetime, timezone
|
| 4 |
-
|
| 5 |
-
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
|
| 7 |
-
from src.submission.check_validity import (
|
| 8 |
-
already_submitted_models,
|
| 9 |
-
check_model_card,
|
| 10 |
-
get_model_size,
|
| 11 |
-
is_model_on_hub,
|
| 12 |
-
)
|
| 13 |
-
|
| 14 |
-
REQUESTED_MODELS = None
|
| 15 |
-
USERS_TO_SUBMISSION_DATES = None
|
| 16 |
-
|
| 17 |
-
def add_new_eval(
|
| 18 |
-
model: str,
|
| 19 |
-
base_model: str,
|
| 20 |
-
revision: str,
|
| 21 |
-
precision: str,
|
| 22 |
-
weight_type: str,
|
| 23 |
-
model_type: str,
|
| 24 |
-
):
|
| 25 |
-
global REQUESTED_MODELS
|
| 26 |
-
global USERS_TO_SUBMISSION_DATES
|
| 27 |
-
if not REQUESTED_MODELS:
|
| 28 |
-
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 29 |
-
|
| 30 |
-
user_name = ""
|
| 31 |
-
model_path = model
|
| 32 |
-
if "/" in model:
|
| 33 |
-
user_name = model.split("/")[0]
|
| 34 |
-
model_path = model.split("/")[1]
|
| 35 |
-
|
| 36 |
-
precision = precision.split(" ")[0]
|
| 37 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
| 38 |
-
|
| 39 |
-
if model_type is None or model_type == "":
|
| 40 |
-
return styled_error("Please select a model type.")
|
| 41 |
-
|
| 42 |
-
# Does the model actually exist?
|
| 43 |
-
if revision == "":
|
| 44 |
-
revision = "main"
|
| 45 |
-
|
| 46 |
-
# Is the model on the hub?
|
| 47 |
-
if weight_type in ["Delta", "Adapter"]:
|
| 48 |
-
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 49 |
-
if not base_model_on_hub:
|
| 50 |
-
return styled_error(f'Base model "{base_model}" {error}')
|
| 51 |
-
|
| 52 |
-
if not weight_type == "Adapter":
|
| 53 |
-
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 54 |
-
if not model_on_hub:
|
| 55 |
-
return styled_error(f'Model "{model}" {error}')
|
| 56 |
-
|
| 57 |
-
# Is the model info correctly filled?
|
| 58 |
-
try:
|
| 59 |
-
model_info = API.model_info(repo_id=model, revision=revision)
|
| 60 |
-
except Exception:
|
| 61 |
-
return styled_error("Could not get your model information. Please fill it up properly.")
|
| 62 |
-
|
| 63 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
| 64 |
-
|
| 65 |
-
# Were the model card and license filled?
|
| 66 |
-
try:
|
| 67 |
-
license = model_info.cardData["license"]
|
| 68 |
-
except Exception:
|
| 69 |
-
return styled_error("Please select a license for your model")
|
| 70 |
-
|
| 71 |
-
modelcard_OK, error_msg = check_model_card(model)
|
| 72 |
-
if not modelcard_OK:
|
| 73 |
-
return styled_error(error_msg)
|
| 74 |
-
|
| 75 |
-
# Seems good, creating the eval
|
| 76 |
-
print("Adding new eval")
|
| 77 |
-
|
| 78 |
-
eval_entry = {
|
| 79 |
-
"model": model,
|
| 80 |
-
"base_model": base_model,
|
| 81 |
-
"revision": revision,
|
| 82 |
-
"precision": precision,
|
| 83 |
-
"weight_type": weight_type,
|
| 84 |
-
"status": "PENDING",
|
| 85 |
-
"submitted_time": current_time,
|
| 86 |
-
"model_type": model_type,
|
| 87 |
-
"likes": model_info.likes,
|
| 88 |
-
"params": model_size,
|
| 89 |
-
"license": license,
|
| 90 |
-
"private": False,
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
-
# Check for duplicate submission
|
| 94 |
-
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
| 95 |
-
return styled_warning("This model has been already submitted.")
|
| 96 |
-
|
| 97 |
-
print("Creating eval file")
|
| 98 |
-
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
| 99 |
-
os.makedirs(OUT_DIR, exist_ok=True)
|
| 100 |
-
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
| 101 |
-
|
| 102 |
-
with open(out_path, "w") as f:
|
| 103 |
-
f.write(json.dumps(eval_entry))
|
| 104 |
-
|
| 105 |
-
print("Uploading eval file")
|
| 106 |
-
API.upload_file(
|
| 107 |
-
path_or_fileobj=out_path,
|
| 108 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
| 109 |
-
repo_id=QUEUE_REPO,
|
| 110 |
-
repo_type="dataset",
|
| 111 |
-
commit_message=f"Add {model} to eval queue",
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
# Remove the local file
|
| 115 |
-
os.remove(out_path)
|
| 116 |
-
|
| 117 |
-
return styled_message(
|
| 118 |
-
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
# --------------------------------------------------------
|
| 122 |
-
# Manual metrics submission (bypass evaluation queue)
|
| 123 |
-
# --------------------------------------------------------
|
| 124 |
-
|
| 125 |
-
ALL_SUBJECTIVE_FIELDS = [
|
| 126 |
-
"readability",
|
| 127 |
-
"relevance",
|
| 128 |
-
"explanation_clarity",
|
| 129 |
-
"problem_identification",
|
| 130 |
-
"actionability",
|
| 131 |
-
"completeness",
|
| 132 |
-
"specificity",
|
| 133 |
-
"contextual_adequacy",
|
| 134 |
-
"consistency",
|
| 135 |
-
"brevity",
|
| 136 |
-
]
|
| 137 |
-
|
| 138 |
-
def _compute_multimetric(payload: dict) -> float:
|
| 139 |
-
"""Average of the 10 subjective metrics."""
|
| 140 |
-
total = sum(float(payload[f]) for f in ALL_SUBJECTIVE_FIELDS)
|
| 141 |
-
return total / len(ALL_SUBJECTIVE_FIELDS)
|
| 142 |
-
|
| 143 |
-
def add_manual_results(
|
| 144 |
-
model: str,
|
| 145 |
-
revision: str,
|
| 146 |
-
bleu: float,
|
| 147 |
-
readability: int,
|
| 148 |
-
relevance: int,
|
| 149 |
-
explanation_clarity: int,
|
| 150 |
-
problem_identification: int,
|
| 151 |
-
actionability: int,
|
| 152 |
-
completeness: int,
|
| 153 |
-
specificity: int,
|
| 154 |
-
contextual_adequacy: int,
|
| 155 |
-
consistency: int,
|
| 156 |
-
brevity: int,
|
| 157 |
-
pass_at_1: float,
|
| 158 |
-
pass_at_5: float,
|
| 159 |
-
pass_at_10: float,
|
| 160 |
-
):
|
| 161 |
-
"""Directly submit evaluation metrics for a model and push them to the results dataset."""
|
| 162 |
-
|
| 163 |
-
# Basic validation
|
| 164 |
-
if model == "":
|
| 165 |
-
return styled_error("Please specify a model name.")
|
| 166 |
-
|
| 167 |
-
if revision == "":
|
| 168 |
-
revision = "main"
|
| 169 |
-
|
| 170 |
-
if pass_at_5 < pass_at_1:
|
| 171 |
-
return styled_error("pass@5 must be greater or equal to pass@1")
|
| 172 |
-
if pass_at_10 < pass_at_5:
|
| 173 |
-
return styled_error("pass@10 must be greater or equal to pass@5")
|
| 174 |
-
|
| 175 |
-
# Prepare dictionary in the same format used by read_evals.py
|
| 176 |
-
payload_dict = {
|
| 177 |
-
"model": model,
|
| 178 |
-
"revision": revision,
|
| 179 |
-
"bleu": bleu,
|
| 180 |
-
"readability": readability,
|
| 181 |
-
"relevance": relevance,
|
| 182 |
-
"explanation_clarity": explanation_clarity,
|
| 183 |
-
"problem_identification": problem_identification,
|
| 184 |
-
"actionability": actionability,
|
| 185 |
-
"completeness": completeness,
|
| 186 |
-
"specificity": specificity,
|
| 187 |
-
"contextual_adequacy": contextual_adequacy,
|
| 188 |
-
"consistency": consistency,
|
| 189 |
-
"brevity": brevity,
|
| 190 |
-
"pass_at_1": pass_at_1,
|
| 191 |
-
"pass_at_5": pass_at_5,
|
| 192 |
-
"pass_at_10": pass_at_10,
|
| 193 |
-
}
|
| 194 |
-
|
| 195 |
-
multimetric = _compute_multimetric(payload_dict)
|
| 196 |
-
|
| 197 |
-
# Compose final results file (same structure as api_submit_results)
|
| 198 |
-
result_json = {
|
| 199 |
-
"config": {
|
| 200 |
-
"model_dtype": "unknown",
|
| 201 |
-
"model_name": model,
|
| 202 |
-
"model_sha": revision,
|
| 203 |
-
},
|
| 204 |
-
"results": {
|
| 205 |
-
"bleu": {"score": bleu},
|
| 206 |
-
"multimetric": {"score": multimetric},
|
| 207 |
-
"pass_at_1": {"score": pass_at_1},
|
| 208 |
-
"pass_at_5": {"score": pass_at_5},
|
| 209 |
-
"pass_at_10": {"score": pass_at_10},
|
| 210 |
-
},
|
| 211 |
-
}
|
| 212 |
-
|
| 213 |
-
# Add subjective metrics
|
| 214 |
-
for field in ALL_SUBJECTIVE_FIELDS:
|
| 215 |
-
result_json["results"][field] = {"score": payload_dict[field]}
|
| 216 |
-
|
| 217 |
-
# Write file locally then upload
|
| 218 |
-
try:
|
| 219 |
-
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
| 220 |
-
except Exception:
|
| 221 |
-
pass
|
| 222 |
-
|
| 223 |
-
from datetime import datetime, timezone
|
| 224 |
-
import uuid
|
| 225 |
-
|
| 226 |
-
ts = datetime.now(timezone.utc).strftime("%Y%m%dT%H%M%SZ")
|
| 227 |
-
unique_id = uuid.uuid4().hex[:8]
|
| 228 |
-
filename = f"results_{model.replace('/', '_')}_{ts}_{unique_id}.json"
|
| 229 |
-
local_path = os.path.join(EVAL_RESULTS_PATH, filename)
|
| 230 |
-
|
| 231 |
-
try:
|
| 232 |
-
with open(local_path, "w") as fp:
|
| 233 |
-
json.dump(result_json, fp)
|
| 234 |
-
|
| 235 |
-
API.upload_file(
|
| 236 |
-
path_or_fileobj=local_path,
|
| 237 |
-
path_in_repo=filename,
|
| 238 |
-
repo_id=RESULTS_REPO,
|
| 239 |
-
repo_type="dataset",
|
| 240 |
-
commit_message=f"Add manual results for {model}",
|
| 241 |
-
)
|
| 242 |
-
except Exception as e:
|
| 243 |
-
return styled_error(f"Failed to upload results: {e}")
|
| 244 |
-
finally:
|
| 245 |
-
if os.path.exists(local_path):
|
| 246 |
-
os.remove(local_path)
|
| 247 |
-
|
| 248 |
-
return styled_message("Metrics successfully submitted! The leaderboard will refresh shortly.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|