Spaces:
Sleeping
Sleeping
zalupa5
Browse files- app.py +66 -205
- example_submission.jsonl +4 -4
- leaderboard_data.json +28 -19
- src/display/utils.py +12 -15
- src/populate.py +22 -5
app.py
CHANGED
|
@@ -33,6 +33,7 @@ from src.display.utils import (
|
|
| 33 |
CATEGORIES,
|
| 34 |
COMMENT_LANGUAGES,
|
| 35 |
EXAMPLE_CATEGORIES,
|
|
|
|
| 36 |
ModelType,
|
| 37 |
Mode,
|
| 38 |
Precision,
|
|
@@ -350,10 +351,10 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
| 350 |
|
| 351 |
|
| 352 |
def search_filter_leaderboard(
|
| 353 |
-
df, search_query="",
|
| 354 |
):
|
| 355 |
"""
|
| 356 |
-
Filter the leaderboard based on search query and
|
| 357 |
"""
|
| 358 |
if df is None or df.empty:
|
| 359 |
return df
|
|
@@ -367,11 +368,14 @@ def search_filter_leaderboard(
|
|
| 367 |
axis=1,
|
| 368 |
)
|
| 369 |
|
| 370 |
-
# Apply
|
| 371 |
-
if
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
# Apply search query
|
| 377 |
if search_query:
|
|
@@ -398,7 +402,7 @@ def search_filter_leaderboard(
|
|
| 398 |
|
| 399 |
|
| 400 |
def refresh_data_with_filters(
|
| 401 |
-
version=CURRENT_VERSION, search_query="",
|
| 402 |
):
|
| 403 |
"""
|
| 404 |
Refresh the leaderboard data and update all components with filtering.
|
|
@@ -429,10 +433,10 @@ def refresh_data_with_filters(
|
|
| 429 |
|
| 430 |
# Apply filters to each dataframe
|
| 431 |
filtered_main_df = search_filter_leaderboard(
|
| 432 |
-
main_df, search_query,
|
| 433 |
)
|
| 434 |
filtered_category_dfs = [
|
| 435 |
-
search_filter_leaderboard(df, search_query,
|
| 436 |
for df in category_dfs
|
| 437 |
]
|
| 438 |
|
|
@@ -502,6 +506,8 @@ def submit_results(
|
|
| 502 |
submission_file: tempfile._TemporaryFileWrapper,
|
| 503 |
version: str,
|
| 504 |
review_model_type: ReviewModelType,
|
|
|
|
|
|
|
| 505 |
):
|
| 506 |
"""
|
| 507 |
Handle submission of results with model metadata.
|
|
@@ -532,6 +538,8 @@ def submit_results(
|
|
| 532 |
"mode": mode,
|
| 533 |
"version": version,
|
| 534 |
"review_model_type": review_model_type,
|
|
|
|
|
|
|
| 535 |
}
|
| 536 |
|
| 537 |
# Process the submission
|
|
@@ -691,22 +699,9 @@ demo = gr.Blocks(css=custom_css, theme=custom_theme)
|
|
| 691 |
|
| 692 |
CATEGORY_DISPLAY_MAP = {
|
| 693 |
"Python": "Python",
|
| 694 |
-
"JavaScript": "JavaScript",
|
| 695 |
"Java": "Java",
|
| 696 |
-
"C++": "C++",
|
| 697 |
-
"C#": "C#",
|
| 698 |
-
"TypeScript": "TypeScript",
|
| 699 |
-
"Go": "Go",
|
| 700 |
-
"Rust": "Rust",
|
| 701 |
-
"Swift": "Swift",
|
| 702 |
-
"Kotlin": "Kotlin",
|
| 703 |
-
"Ruby": "Ruby",
|
| 704 |
-
"PHP": "PHP",
|
| 705 |
-
"C": "C",
|
| 706 |
"Scala": "Scala",
|
| 707 |
-
"
|
| 708 |
-
"Dart": "Dart",
|
| 709 |
-
"Other": "Other"
|
| 710 |
}
|
| 711 |
# Create reverse mapping for lookups
|
| 712 |
CATEGORY_REVERSE_MAP = {v: k for k, v in CATEGORY_DISPLAY_MAP.items()}
|
|
@@ -739,16 +734,31 @@ with demo:
|
|
| 739 |
elem_id="search-bar",
|
| 740 |
scale=2,
|
| 741 |
)
|
| 742 |
-
|
| 743 |
-
choices=[
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 747 |
multiselect=True,
|
| 748 |
value=[],
|
| 749 |
interactive=True,
|
| 750 |
scale=1,
|
| 751 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 752 |
column_selector = gr.Dropdown(
|
| 753 |
choices=get_all_column_choices(),
|
| 754 |
label="Columns",
|
|
@@ -783,19 +793,19 @@ with demo:
|
|
| 783 |
def update_with_search_filters(
|
| 784 |
version=CURRENT_VERSION,
|
| 785 |
search_query="",
|
| 786 |
-
|
| 787 |
selected_columns=None,
|
| 788 |
):
|
| 789 |
"""
|
| 790 |
Update the leaderboards with search and filter settings.
|
| 791 |
"""
|
| 792 |
return refresh_data_with_filters(
|
| 793 |
-
version, search_query,
|
| 794 |
)
|
| 795 |
|
| 796 |
# Refresh button functionality
|
| 797 |
def refresh_and_update(
|
| 798 |
-
version, search_query,
|
| 799 |
):
|
| 800 |
"""
|
| 801 |
Refresh data, update LEADERBOARD_DF, and return updated components.
|
|
@@ -804,7 +814,7 @@ with demo:
|
|
| 804 |
main_df = get_leaderboard_df(version=version)
|
| 805 |
LEADERBOARD_DF = main_df # Update the global DataFrame
|
| 806 |
return refresh_data_with_filters(
|
| 807 |
-
version, search_query,
|
| 808 |
)
|
| 809 |
|
| 810 |
refresh_button.click(
|
|
@@ -812,7 +822,7 @@ with demo:
|
|
| 812 |
inputs=[
|
| 813 |
version_selector,
|
| 814 |
search_input,
|
| 815 |
-
|
| 816 |
column_selector,
|
| 817 |
],
|
| 818 |
outputs=[leaderboard]
|
|
@@ -827,7 +837,7 @@ with demo:
|
|
| 827 |
inputs=[
|
| 828 |
version_selector,
|
| 829 |
search_input,
|
| 830 |
-
|
| 831 |
column_selector,
|
| 832 |
],
|
| 833 |
outputs=[leaderboard]
|
|
@@ -837,13 +847,13 @@ with demo:
|
|
| 837 |
],
|
| 838 |
)
|
| 839 |
|
| 840 |
-
#
|
| 841 |
-
|
| 842 |
fn=refresh_data_with_filters,
|
| 843 |
inputs=[
|
| 844 |
version_selector,
|
| 845 |
search_input,
|
| 846 |
-
|
| 847 |
column_selector,
|
| 848 |
],
|
| 849 |
outputs=[leaderboard]
|
|
@@ -859,7 +869,7 @@ with demo:
|
|
| 859 |
inputs=[
|
| 860 |
version_selector,
|
| 861 |
search_input,
|
| 862 |
-
|
| 863 |
column_selector,
|
| 864 |
],
|
| 865 |
outputs=[leaderboard]
|
|
@@ -963,175 +973,10 @@ with demo:
|
|
| 963 |
],
|
| 964 |
)
|
| 965 |
|
| 966 |
-
with gr.TabItem("Visualize", elem_id="codereview-viz-tab", id=1):
|
| 967 |
-
with gr.Row():
|
| 968 |
-
with gr.Column():
|
| 969 |
-
viz_version_selector = gr.Dropdown(
|
| 970 |
-
choices=BENCHMARK_VERSIONS,
|
| 971 |
-
label="Benchmark Version",
|
| 972 |
-
value=CURRENT_VERSION,
|
| 973 |
-
interactive=True,
|
| 974 |
-
visible=False,
|
| 975 |
-
)
|
| 976 |
-
|
| 977 |
-
# New: Mode selector
|
| 978 |
-
def get_model_mode_choices(version):
|
| 979 |
-
df = get_leaderboard_df(version=version)
|
| 980 |
-
if df.empty:
|
| 981 |
-
return []
|
| 982 |
-
return sorted([
|
| 983 |
-
f"{str(row['model_name']).lower()} [{row['mode']}]"
|
| 984 |
-
for _, row in df.drop_duplicates(subset=["model_name", "mode"]).iterrows()
|
| 985 |
-
])
|
| 986 |
-
|
| 987 |
-
model_mode_selector = gr.Dropdown(
|
| 988 |
-
choices=get_model_mode_choices(CURRENT_VERSION),
|
| 989 |
-
label="Select Model(s) [Mode] to Compare",
|
| 990 |
-
multiselect=True,
|
| 991 |
-
interactive=True,
|
| 992 |
-
)
|
| 993 |
-
with gr.Column():
|
| 994 |
-
# Add Overall Performance to categories, use display names
|
| 995 |
-
viz_categories_display = ["All Results"] + [
|
| 996 |
-
CATEGORY_DISPLAY_MAP.get(cat, cat) for cat in CATEGORIES
|
| 997 |
-
]
|
| 998 |
-
category_selector = gr.Dropdown(
|
| 999 |
-
choices=viz_categories_display,
|
| 1000 |
-
label="Select Category",
|
| 1001 |
-
value=viz_categories_display[0],
|
| 1002 |
-
interactive=True,
|
| 1003 |
-
)
|
| 1004 |
-
metric_selector = gr.Dropdown(
|
| 1005 |
-
choices=[
|
| 1006 |
-
"accuracy",
|
| 1007 |
-
"f1_binary",
|
| 1008 |
-
"precision_binary",
|
| 1009 |
-
"recall_binary",
|
| 1010 |
-
"error_ratio",
|
| 1011 |
-
],
|
| 1012 |
-
label="Select Metric",
|
| 1013 |
-
value="accuracy",
|
| 1014 |
-
interactive=True,
|
| 1015 |
-
)
|
| 1016 |
-
|
| 1017 |
-
plot_output = gr.Plot()
|
| 1018 |
-
|
| 1019 |
-
# Update visualization when any selector changes
|
| 1020 |
-
def update_visualization_with_mode(
|
| 1021 |
-
selected_model_modes, selected_category, selected_metric, version
|
| 1022 |
-
):
|
| 1023 |
-
if not selected_model_modes:
|
| 1024 |
-
return go.Figure()
|
| 1025 |
-
df = (
|
| 1026 |
-
get_leaderboard_df(version=version)
|
| 1027 |
-
if selected_category == "All Results"
|
| 1028 |
-
else get_category_leaderboard_df(selected_category, version=version)
|
| 1029 |
-
)
|
| 1030 |
-
if df.empty:
|
| 1031 |
-
return go.Figure()
|
| 1032 |
-
df = df.copy()
|
| 1033 |
-
df["model_name"] = df["model_name"].str.lower()
|
| 1034 |
-
selected_pairs = [s.rsplit(" [", 1) for s in selected_model_modes]
|
| 1035 |
-
selected_pairs = [
|
| 1036 |
-
(name.strip().lower(), mode.strip("] "))
|
| 1037 |
-
for name, mode in selected_pairs
|
| 1038 |
-
]
|
| 1039 |
-
mask = df.apply(
|
| 1040 |
-
lambda row: (row["model_name"], str(row["mode"])) in selected_pairs,
|
| 1041 |
-
axis=1,
|
| 1042 |
-
)
|
| 1043 |
-
filtered_df = df[mask]
|
| 1044 |
-
metric_cols = [col for col in filtered_df.columns if selected_metric in col]
|
| 1045 |
-
fig = go.Figure()
|
| 1046 |
-
colors = ["#8FCCCC", "#C2A4B6", "#98B4A6", "#B68F7C"]
|
| 1047 |
-
for idx, (model_name, mode) in enumerate(selected_pairs):
|
| 1048 |
-
model_data = filtered_df[
|
| 1049 |
-
(filtered_df["model_name"] == model_name)
|
| 1050 |
-
& (filtered_df["mode"] == mode)
|
| 1051 |
-
]
|
| 1052 |
-
if not model_data.empty:
|
| 1053 |
-
values = model_data[metric_cols].values[0].tolist()
|
| 1054 |
-
values = values + [values[0]]
|
| 1055 |
-
categories = [col.replace(f"_{selected_metric}", "") for col in metric_cols]
|
| 1056 |
-
# Replace 'jailbreaked' with 'jailbroken' in categories
|
| 1057 |
-
categories = [cat.replace('jailbreaked', 'jailbroken') for cat in categories]
|
| 1058 |
-
categories = categories + [categories[0]]
|
| 1059 |
-
fig.add_trace(
|
| 1060 |
-
go.Scatterpolar(
|
| 1061 |
-
r=values,
|
| 1062 |
-
theta=categories,
|
| 1063 |
-
name=f"{model_name} [{mode}]",
|
| 1064 |
-
line_color=colors[idx % len(colors)],
|
| 1065 |
-
fill="toself",
|
| 1066 |
-
)
|
| 1067 |
-
)
|
| 1068 |
-
fig.update_layout(
|
| 1069 |
-
paper_bgcolor="#000000",
|
| 1070 |
-
plot_bgcolor="#000000",
|
| 1071 |
-
font={"color": "#ffffff"},
|
| 1072 |
-
title={
|
| 1073 |
-
"text": f"{selected_category} - {selected_metric.upper()} Score Comparison",
|
| 1074 |
-
"font": {"color": "#ffffff", "size": 24},
|
| 1075 |
-
},
|
| 1076 |
-
polar=dict(
|
| 1077 |
-
bgcolor="#000000",
|
| 1078 |
-
radialaxis=dict(
|
| 1079 |
-
visible=True,
|
| 1080 |
-
range=[0, 1],
|
| 1081 |
-
gridcolor="#333333",
|
| 1082 |
-
linecolor="#333333",
|
| 1083 |
-
tickfont={"color": "#ffffff"},
|
| 1084 |
-
),
|
| 1085 |
-
angularaxis=dict(
|
| 1086 |
-
gridcolor="#333333",
|
| 1087 |
-
linecolor="#333333",
|
| 1088 |
-
tickfont={"color": "#ffffff"},
|
| 1089 |
-
),
|
| 1090 |
-
),
|
| 1091 |
-
height=600,
|
| 1092 |
-
showlegend=True,
|
| 1093 |
-
legend=dict(
|
| 1094 |
-
yanchor="top",
|
| 1095 |
-
y=0.99,
|
| 1096 |
-
xanchor="right",
|
| 1097 |
-
x=0.99,
|
| 1098 |
-
bgcolor="rgba(0,0,0,0.5)",
|
| 1099 |
-
font={"color": "#ffffff"},
|
| 1100 |
-
),
|
| 1101 |
-
)
|
| 1102 |
-
return fig
|
| 1103 |
-
|
| 1104 |
-
# Connect selectors to update function
|
| 1105 |
-
for control in [
|
| 1106 |
-
viz_version_selector,
|
| 1107 |
-
model_mode_selector,
|
| 1108 |
-
category_selector,
|
| 1109 |
-
metric_selector,
|
| 1110 |
-
]:
|
| 1111 |
-
control.change(
|
| 1112 |
-
fn=lambda smm, sc, s_metric, v: update_visualization_with_mode(
|
| 1113 |
-
smm, CATEGORY_REVERSE_MAP.get(sc, sc), s_metric, v
|
| 1114 |
-
),
|
| 1115 |
-
inputs=[
|
| 1116 |
-
model_mode_selector,
|
| 1117 |
-
category_selector,
|
| 1118 |
-
metric_selector,
|
| 1119 |
-
viz_version_selector,
|
| 1120 |
-
],
|
| 1121 |
-
outputs=plot_output,
|
| 1122 |
-
)
|
| 1123 |
-
|
| 1124 |
-
# Update model_mode_selector choices when version changes
|
| 1125 |
-
viz_version_selector.change(
|
| 1126 |
-
fn=get_model_mode_choices,
|
| 1127 |
-
inputs=[viz_version_selector],
|
| 1128 |
-
outputs=[model_mode_selector],
|
| 1129 |
-
)
|
| 1130 |
-
|
| 1131 |
# with gr.TabItem("About", elem_id="codereview-about-tab", id=2):
|
| 1132 |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 1133 |
|
| 1134 |
-
with gr.TabItem("Submit", elem_id="codereview-submit-tab", id=
|
| 1135 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 1136 |
|
| 1137 |
with gr.Row():
|
|
@@ -1179,6 +1024,20 @@ with demo:
|
|
| 1179 |
value=ReviewModelType.CUSTOM.name,
|
| 1180 |
interactive=True,
|
| 1181 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1182 |
|
| 1183 |
with gr.Column():
|
| 1184 |
precision = gr.Dropdown(
|
|
@@ -1222,6 +1081,8 @@ with demo:
|
|
| 1222 |
file_input,
|
| 1223 |
submission_version_selector,
|
| 1224 |
review_model_type,
|
|
|
|
|
|
|
| 1225 |
],
|
| 1226 |
outputs=result_output,
|
| 1227 |
)
|
|
|
|
| 33 |
CATEGORIES,
|
| 34 |
COMMENT_LANGUAGES,
|
| 35 |
EXAMPLE_CATEGORIES,
|
| 36 |
+
TOPICS,
|
| 37 |
ModelType,
|
| 38 |
Mode,
|
| 39 |
Precision,
|
|
|
|
| 351 |
|
| 352 |
|
| 353 |
def search_filter_leaderboard(
|
| 354 |
+
df, search_query="", comment_languages=None, version=CURRENT_VERSION
|
| 355 |
):
|
| 356 |
"""
|
| 357 |
+
Filter the leaderboard based on search query and comment languages.
|
| 358 |
"""
|
| 359 |
if df is None or df.empty:
|
| 360 |
return df
|
|
|
|
| 368 |
axis=1,
|
| 369 |
)
|
| 370 |
|
| 371 |
+
# Apply comment language filter (assuming there's a comment_language column in the data)
|
| 372 |
+
if comment_languages and len(comment_languages) > 0:
|
| 373 |
+
# Look for a comment language column in the dataframe
|
| 374 |
+
comment_lang_cols = [col for col in filtered_df.columns if 'comment_language' in col.lower()]
|
| 375 |
+
if comment_lang_cols:
|
| 376 |
+
filtered_df = filtered_df[
|
| 377 |
+
filtered_df[comment_lang_cols[0]].isin(comment_languages)
|
| 378 |
+
]
|
| 379 |
|
| 380 |
# Apply search query
|
| 381 |
if search_query:
|
|
|
|
| 402 |
|
| 403 |
|
| 404 |
def refresh_data_with_filters(
|
| 405 |
+
version=CURRENT_VERSION, search_query="", comment_languages=None, selected_columns=None
|
| 406 |
):
|
| 407 |
"""
|
| 408 |
Refresh the leaderboard data and update all components with filtering.
|
|
|
|
| 433 |
|
| 434 |
# Apply filters to each dataframe
|
| 435 |
filtered_main_df = search_filter_leaderboard(
|
| 436 |
+
main_df, search_query, comment_languages, version
|
| 437 |
)
|
| 438 |
filtered_category_dfs = [
|
| 439 |
+
search_filter_leaderboard(df, search_query, comment_languages, version)
|
| 440 |
for df in category_dfs
|
| 441 |
]
|
| 442 |
|
|
|
|
| 506 |
submission_file: tempfile._TemporaryFileWrapper,
|
| 507 |
version: str,
|
| 508 |
review_model_type: ReviewModelType,
|
| 509 |
+
programming_language: str,
|
| 510 |
+
comment_language: str,
|
| 511 |
):
|
| 512 |
"""
|
| 513 |
Handle submission of results with model metadata.
|
|
|
|
| 538 |
"mode": mode,
|
| 539 |
"version": version,
|
| 540 |
"review_model_type": review_model_type,
|
| 541 |
+
"programming_language": programming_language,
|
| 542 |
+
"comment_language": comment_language,
|
| 543 |
}
|
| 544 |
|
| 545 |
# Process the submission
|
|
|
|
| 699 |
|
| 700 |
CATEGORY_DISPLAY_MAP = {
|
| 701 |
"Python": "Python",
|
|
|
|
| 702 |
"Java": "Java",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 703 |
"Scala": "Scala",
|
| 704 |
+
"Go": "Go"
|
|
|
|
|
|
|
| 705 |
}
|
| 706 |
# Create reverse mapping for lookups
|
| 707 |
CATEGORY_REVERSE_MAP = {v: k for k, v in CATEGORY_DISPLAY_MAP.items()}
|
|
|
|
| 734 |
elem_id="search-bar",
|
| 735 |
scale=2,
|
| 736 |
)
|
| 737 |
+
comment_language_filter = gr.Dropdown(
|
| 738 |
+
choices=["en", "ru"],
|
| 739 |
+
label="Comment Language",
|
| 740 |
+
multiselect=True,
|
| 741 |
+
value=[],
|
| 742 |
+
interactive=True,
|
| 743 |
+
scale=1,
|
| 744 |
+
)
|
| 745 |
+
programming_language_filter = gr.Dropdown(
|
| 746 |
+
choices=["Python", "Java", "Scala", "Go"],
|
| 747 |
+
label="Programming Language",
|
| 748 |
multiselect=True,
|
| 749 |
value=[],
|
| 750 |
interactive=True,
|
| 751 |
scale=1,
|
| 752 |
)
|
| 753 |
+
with gr.Row():
|
| 754 |
+
topic_filter = gr.Dropdown(
|
| 755 |
+
choices=TOPICS,
|
| 756 |
+
label="Topic",
|
| 757 |
+
multiselect=True,
|
| 758 |
+
value=[],
|
| 759 |
+
interactive=True,
|
| 760 |
+
scale=2,
|
| 761 |
+
)
|
| 762 |
column_selector = gr.Dropdown(
|
| 763 |
choices=get_all_column_choices(),
|
| 764 |
label="Columns",
|
|
|
|
| 793 |
def update_with_search_filters(
|
| 794 |
version=CURRENT_VERSION,
|
| 795 |
search_query="",
|
| 796 |
+
comment_languages=None,
|
| 797 |
selected_columns=None,
|
| 798 |
):
|
| 799 |
"""
|
| 800 |
Update the leaderboards with search and filter settings.
|
| 801 |
"""
|
| 802 |
return refresh_data_with_filters(
|
| 803 |
+
version, search_query, comment_languages, selected_columns
|
| 804 |
)
|
| 805 |
|
| 806 |
# Refresh button functionality
|
| 807 |
def refresh_and_update(
|
| 808 |
+
version, search_query, comment_languages, selected_columns
|
| 809 |
):
|
| 810 |
"""
|
| 811 |
Refresh data, update LEADERBOARD_DF, and return updated components.
|
|
|
|
| 814 |
main_df = get_leaderboard_df(version=version)
|
| 815 |
LEADERBOARD_DF = main_df # Update the global DataFrame
|
| 816 |
return refresh_data_with_filters(
|
| 817 |
+
version, search_query, comment_languages, selected_columns
|
| 818 |
)
|
| 819 |
|
| 820 |
refresh_button.click(
|
|
|
|
| 822 |
inputs=[
|
| 823 |
version_selector,
|
| 824 |
search_input,
|
| 825 |
+
comment_language_filter,
|
| 826 |
column_selector,
|
| 827 |
],
|
| 828 |
outputs=[leaderboard]
|
|
|
|
| 837 |
inputs=[
|
| 838 |
version_selector,
|
| 839 |
search_input,
|
| 840 |
+
comment_language_filter,
|
| 841 |
column_selector,
|
| 842 |
],
|
| 843 |
outputs=[leaderboard]
|
|
|
|
| 847 |
],
|
| 848 |
)
|
| 849 |
|
| 850 |
+
# Comment language filter functionality
|
| 851 |
+
comment_language_filter.change(
|
| 852 |
fn=refresh_data_with_filters,
|
| 853 |
inputs=[
|
| 854 |
version_selector,
|
| 855 |
search_input,
|
| 856 |
+
comment_language_filter,
|
| 857 |
column_selector,
|
| 858 |
],
|
| 859 |
outputs=[leaderboard]
|
|
|
|
| 869 |
inputs=[
|
| 870 |
version_selector,
|
| 871 |
search_input,
|
| 872 |
+
comment_language_filter,
|
| 873 |
column_selector,
|
| 874 |
],
|
| 875 |
outputs=[leaderboard]
|
|
|
|
| 973 |
],
|
| 974 |
)
|
| 975 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 976 |
# with gr.TabItem("About", elem_id="codereview-about-tab", id=2):
|
| 977 |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 978 |
|
| 979 |
+
with gr.TabItem("Submit", elem_id="codereview-submit-tab", id=1):
|
| 980 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 981 |
|
| 982 |
with gr.Row():
|
|
|
|
| 1024 |
value=ReviewModelType.CUSTOM.name,
|
| 1025 |
interactive=True,
|
| 1026 |
)
|
| 1027 |
+
programming_language_selector = gr.Dropdown(
|
| 1028 |
+
choices=["Python", "Java", "Scala", "Go"],
|
| 1029 |
+
label="Programming Language",
|
| 1030 |
+
multiselect=False,
|
| 1031 |
+
value=None,
|
| 1032 |
+
interactive=True,
|
| 1033 |
+
)
|
| 1034 |
+
comment_language_selector = gr.Dropdown(
|
| 1035 |
+
choices=["en", "ru"],
|
| 1036 |
+
label="Comment Language",
|
| 1037 |
+
multiselect=False,
|
| 1038 |
+
value="en",
|
| 1039 |
+
interactive=True,
|
| 1040 |
+
)
|
| 1041 |
|
| 1042 |
with gr.Column():
|
| 1043 |
precision = gr.Dropdown(
|
|
|
|
| 1081 |
file_input,
|
| 1082 |
submission_version_selector,
|
| 1083 |
review_model_type,
|
| 1084 |
+
programming_language_selector,
|
| 1085 |
+
comment_language_selector,
|
| 1086 |
],
|
| 1087 |
outputs=result_output,
|
| 1088 |
)
|
example_submission.jsonl
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
{"model_name": "GPT-4-CodeReview", "programming_language": "
|
| 2 |
-
{"model_name": "GPT-4-CodeReview", "programming_language": "
|
| 3 |
-
{"model_name": "Claude-3-CodeReview", "programming_language": "
|
| 4 |
-
{"model_name": "Llama-CodeReview", "programming_language": "
|
|
|
|
| 1 |
+
{"model_name": "GPT-4-CodeReview", "programming_language": "Python", "comment_language": "en", "topic": "Code Reliability", "observation_id": "obs_001", "code_snippet": "def calculate_sum(a, b):\n return a + b", "review_text": "This function is simple and correct, but consider adding type hints and docstring for better documentation.", "readability": 8.5, "relevance": 9.0, "explanation_clarity": 7.8, "problem_identification": 8.2, "actionability": 8.7, "completeness": 8.0, "specificity": 7.5, "contextual_adequacy": 8.3, "consistency": 8.8, "brevity": 7.2, "pass_at_1": 0.75, "pass_at_5": 0.88, "pass_at_10": 0.92, "bleu_at_10": 0.65, "total_evaluations": 100}
|
| 2 |
+
{"model_name": "GPT-4-CodeReview", "programming_language": "Java", "comment_language": "en", "topic": "Coding Standards", "observation_id": "obs_002", "code_snippet": "public class Calculator {\n public int add(int a, int b) {\n return a + b;\n }\n}", "review_text": "Consider following Java naming conventions and adding JavaDoc comments. The method is functionally correct.", "readability": 8.2, "relevance": 8.8, "explanation_clarity": 7.5, "problem_identification": 8.0, "actionability": 8.5, "completeness": 7.8, "specificity": 7.2, "contextual_adequacy": 8.1, "consistency": 8.6, "brevity": 7.0, "pass_at_1": 0.72, "pass_at_5": 0.85, "pass_at_10": 0.90, "bleu_at_10": 0.62, "total_evaluations": 100}
|
| 3 |
+
{"model_name": "Claude-3-CodeReview", "programming_language": "Scala", "comment_language": "ru", "topic": "Performance Issues", "observation_id": "obs_003", "code_snippet": "def fibonacci(n: Int): Int = {\n if (n <= 1) n\n else fibonacci(n-1) + fibonacci(n-2)\n}", "review_text": "Эта реализация неэффективна из-за экспоненциальной сложности. Рекомендуется использовать мемоизацию или итеративный подход.", "readability": 8.8, "relevance": 8.5, "explanation_clarity": 8.2, "problem_identification": 9.2, "actionability": 8.3, "completeness": 8.5, "specificity": 8.0, "contextual_adequacy": 8.6, "consistency": 8.2, "brevity": 8.8, "pass_at_1": 0.78, "pass_at_5": 0.89, "pass_at_10": 0.93, "bleu_at_10": 0.68, "total_evaluations": 100}
|
| 4 |
+
{"model_name": "Llama-CodeReview", "programming_language": "Go", "comment_language": "en", "topic": "Variables", "observation_id": "obs_004", "code_snippet": "package main\n\nimport \"fmt\"\n\nfunc main() {\n var x int = 5\n var y int = 10\n fmt.Println(x + y)\n}", "review_text": "Consider using short variable declarations (:=) for local variables. Also, the variable names could be more descriptive.", "readability": 7.5, "relevance": 7.8, "explanation_clarity": 7.0, "problem_identification": 7.5, "actionability": 7.2, "completeness": 7.8, "specificity": 6.8, "contextual_adequacy": 7.3, "consistency": 7.6, "brevity": 6.5, "pass_at_1": 0.65, "pass_at_5": 0.78, "pass_at_10": 0.85, "bleu_at_10": 0.55, "total_evaluations": 100}
|
leaderboard_data.json
CHANGED
|
@@ -1,23 +1,32 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
{
|
| 4 |
-
"model_name": "
|
| 5 |
-
"
|
| 6 |
-
"
|
| 7 |
-
"
|
| 8 |
-
"
|
| 9 |
-
"
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
}
|
| 22 |
-
]
|
|
|
|
|
|
|
| 23 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"entries": [
|
| 3 |
{
|
| 4 |
+
"model_name": "GPT-4-CodeReview",
|
| 5 |
+
"model_type": "LLM",
|
| 6 |
+
"mode": "Strict",
|
| 7 |
+
"review_model_type": "gpt-4",
|
| 8 |
+
"programming_language": "Python",
|
| 9 |
+
"comment_language": "en",
|
| 10 |
+
"topic": "Code Reliability",
|
| 11 |
+
"submission_date": "2024-10-06T12:00:00Z",
|
| 12 |
+
"version": "v0",
|
| 13 |
+
"readability": 8.5,
|
| 14 |
+
"relevance": 9.0,
|
| 15 |
+
"explanation_clarity": 7.8,
|
| 16 |
+
"problem_identification": 8.2,
|
| 17 |
+
"actionability": 8.7,
|
| 18 |
+
"completeness": 8.0,
|
| 19 |
+
"specificity": 7.5,
|
| 20 |
+
"contextual_adequacy": 8.3,
|
| 21 |
+
"consistency": 8.8,
|
| 22 |
+
"brevity": 7.2,
|
| 23 |
+
"pass_at_1": 0.75,
|
| 24 |
+
"pass_at_5": 0.88,
|
| 25 |
+
"pass_at_10": 0.92,
|
| 26 |
+
"bleu_at_10": 0.65,
|
| 27 |
+
"total_evaluations": 100
|
| 28 |
}
|
| 29 |
+
],
|
| 30 |
+
"last_updated": "2024-10-06T12:00:00Z",
|
| 31 |
+
"version": "v0"
|
| 32 |
}
|
src/display/utils.py
CHANGED
|
@@ -327,22 +327,9 @@ NEVER_HIDDEN_COLS = [getattr(CODEREVIEW_COLUMN, f.name).name for f in fields(COD
|
|
| 327 |
# Categories for CodeReview Bench (Programming Languages)
|
| 328 |
CATEGORIES = [
|
| 329 |
'Python',
|
| 330 |
-
'
|
| 331 |
-
'Java',
|
| 332 |
-
'C++',
|
| 333 |
-
'C#',
|
| 334 |
-
'TypeScript',
|
| 335 |
-
'Go',
|
| 336 |
-
'Rust',
|
| 337 |
-
'Swift',
|
| 338 |
-
'Kotlin',
|
| 339 |
-
'Ruby',
|
| 340 |
-
'PHP',
|
| 341 |
-
'C',
|
| 342 |
'Scala',
|
| 343 |
-
'
|
| 344 |
-
'Dart',
|
| 345 |
-
'Other'
|
| 346 |
]
|
| 347 |
|
| 348 |
# Language taxonomies for CodeReview Bench
|
|
@@ -351,6 +338,16 @@ COMMENT_LANGUAGES = [
|
|
| 351 |
'en' # English
|
| 352 |
]
|
| 353 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
# Example categories
|
| 355 |
EXAMPLE_CATEGORIES = [
|
| 356 |
'Bug_Fix',
|
|
|
|
| 327 |
# Categories for CodeReview Bench (Programming Languages)
|
| 328 |
CATEGORIES = [
|
| 329 |
'Python',
|
| 330 |
+
'Java',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
'Scala',
|
| 332 |
+
'Go'
|
|
|
|
|
|
|
| 333 |
]
|
| 334 |
|
| 335 |
# Language taxonomies for CodeReview Bench
|
|
|
|
| 338 |
'en' # English
|
| 339 |
]
|
| 340 |
|
| 341 |
+
# Topics for CodeReview Bench
|
| 342 |
+
TOPICS = [
|
| 343 |
+
'Code Reliability',
|
| 344 |
+
'Coding Standards',
|
| 345 |
+
'Code Organization',
|
| 346 |
+
'Performance Issues',
|
| 347 |
+
'Validation',
|
| 348 |
+
'Variables'
|
| 349 |
+
]
|
| 350 |
+
|
| 351 |
# Example categories
|
| 352 |
EXAMPLE_CATEGORIES = [
|
| 353 |
'Bug_Fix',
|
src/populate.py
CHANGED
|
@@ -21,21 +21,38 @@ from src.leaderboard.processor import leaderboard_to_dataframe
|
|
| 21 |
def get_latest_leaderboard(version="v0") -> Optional[Dict]:
|
| 22 |
"""
|
| 23 |
Get the latest leaderboard data from HuggingFace dataset.
|
|
|
|
| 24 |
"""
|
|
|
|
| 25 |
try:
|
| 26 |
-
# Try to download the leaderboard file
|
| 27 |
leaderboard_path = hf_hub_download(
|
| 28 |
repo_id=RESULTS_DATASET_ID,
|
| 29 |
filename=f"leaderboards/leaderboard_{version}.json",
|
| 30 |
repo_type="dataset",
|
| 31 |
token=TOKEN
|
| 32 |
)
|
| 33 |
-
|
| 34 |
with open(leaderboard_path, 'r') as f:
|
| 35 |
return json.load(f)
|
| 36 |
-
except Exception as
|
| 37 |
-
print(f"
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
def get_model_entry(model_name: str, mode: str, version="v0") -> Optional[Dict]:
|
|
|
|
| 21 |
def get_latest_leaderboard(version="v0") -> Optional[Dict]:
|
| 22 |
"""
|
| 23 |
Get the latest leaderboard data from HuggingFace dataset.
|
| 24 |
+
Fallback to local JSON file if HF download fails or is unavailable.
|
| 25 |
"""
|
| 26 |
+
# First try to fetch from HuggingFace Hub
|
| 27 |
try:
|
|
|
|
| 28 |
leaderboard_path = hf_hub_download(
|
| 29 |
repo_id=RESULTS_DATASET_ID,
|
| 30 |
filename=f"leaderboards/leaderboard_{version}.json",
|
| 31 |
repo_type="dataset",
|
| 32 |
token=TOKEN
|
| 33 |
)
|
|
|
|
| 34 |
with open(leaderboard_path, 'r') as f:
|
| 35 |
return json.load(f)
|
| 36 |
+
except Exception as hf_err:
|
| 37 |
+
print(f"HF download failed or unavailable: {hf_err}. Trying local fallback...")
|
| 38 |
+
|
| 39 |
+
# Fallback: attempt to load a local leaderboard_data.json located at the project root
|
| 40 |
+
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 41 |
+
local_path_candidates = [
|
| 42 |
+
os.path.join(project_root, "leaderboard_data.json"), # legacy path in root
|
| 43 |
+
os.path.join(project_root, "data", "leaderboard.json"), # path defined in envs.py
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
for local_path in local_path_candidates:
|
| 47 |
+
if os.path.exists(local_path):
|
| 48 |
+
try:
|
| 49 |
+
with open(local_path, 'r') as f:
|
| 50 |
+
return json.load(f)
|
| 51 |
+
except Exception as local_err:
|
| 52 |
+
print(f"Error loading local leaderboard file {local_path}: {local_err}")
|
| 53 |
+
|
| 54 |
+
# If nothing found, return None
|
| 55 |
+
return None
|
| 56 |
|
| 57 |
|
| 58 |
def get_model_entry(model_name: str, mode: str, version="v0") -> Optional[Dict]:
|