|
|
|
|
|
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] |
|
|
|
|
|
import gradio as gr |
|
|
import pandas as pd |
|
|
from huggingface_hub import HfApi, repocard |
|
|
|
|
|
def is_duplicated(space_id:str)->None: |
|
|
card = repocard.RepoCard.load(space_id, repo_type="space") |
|
|
return getattr(card.data, "duplicated_from", None) is not None |
|
|
|
|
|
|
|
|
|
|
|
def make_clickable_model(model_name, link=None): |
|
|
if link is None: |
|
|
link = "https://huggingface.co/" + "spaces/" + model_name |
|
|
return f'<a target="_blank" href="{link}">{model_name.split("/")[-1]}</a>' |
|
|
|
|
|
def get_space_ids(category): |
|
|
api = HfApi() |
|
|
spaces = api.list_spaces(filter=["keras-dreambooth", category]) |
|
|
print(spaces) |
|
|
space_ids = [x for x in spaces] |
|
|
return space_ids |
|
|
|
|
|
|
|
|
def make_clickable_user(user_id): |
|
|
link = "https://huggingface.co/" + user_id |
|
|
return f'<a target="_blank" href="{link}">{user_id}</a>' |
|
|
|
|
|
def get_submissions(category): |
|
|
submissions = get_space_ids(category) |
|
|
leaderboard_models = [] |
|
|
|
|
|
for submission in submissions: |
|
|
|
|
|
if not is_duplicated(submission.id): |
|
|
user_id = submission.id.split("/")[0] |
|
|
leaderboard_models.append( |
|
|
( |
|
|
make_clickable_user(user_id), |
|
|
make_clickable_model(submission.id), |
|
|
submission.likes, |
|
|
) |
|
|
) |
|
|
|
|
|
df = pd.DataFrame(data=leaderboard_models, columns=["User", "Space", "Likes"]) |
|
|
df.sort_values(by=["Likes"], ascending=False, inplace=True) |
|
|
df.insert(0, "Rank", list(range(1, len(df) + 1))) |
|
|
return df |
|
|
|
|
|
block = gr.Blocks() |
|
|
|
|
|
with block: |
|
|
gr.Markdown( |
|
|
"""# Keras DreamBooth Leaderboard |
|
|
|
|
|
Welcome to the leaderboard for the Keras DreamBooth Event! This is a community event where participants **personalise a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject into the output domain of the model such that it can be synthesized with a _unique identifier_ in the prompt. |
|
|
|
|
|
This competition is composed of 4 _themes_, where each theme will collect models belong to one of the categories shown in the tabs below. We'll be **giving out prizes to the top 3 most liked models per theme**, and you're encouraged to submit as many models as you want! |
|
|
|
|
|
""" |
|
|
) |
|
|
with gr.Tabs(): |
|
|
with gr.TabItem("Nature π¨ π³ "): |
|
|
with gr.Row(): |
|
|
nature_data = gr.components.Dataframe( |
|
|
type="pandas", datatype=["number", "markdown", "markdown", "number"] |
|
|
) |
|
|
with gr.Row(): |
|
|
data_run = gr.Button("Refresh") |
|
|
data_run.click( |
|
|
get_submissions, inputs=gr.Variable("nature"), outputs=nature_data |
|
|
) |
|
|
with gr.TabItem("Science Fiction & Fantasy π§ββοΈ π§ββοΈ π€ "): |
|
|
with gr.Row(): |
|
|
scifi_data = gr.components.Dataframe( |
|
|
type="pandas", datatype=["number", "markdown", "markdown", "number"] |
|
|
) |
|
|
with gr.Row(): |
|
|
data_run = gr.Button("Refresh") |
|
|
data_run.click( |
|
|
get_submissions, inputs=gr.Variable("scifi"), outputs=scifi_data |
|
|
) |
|
|
with gr.TabItem("Consentful πΌοΈ π¨ "): |
|
|
with gr.Row(): |
|
|
consentful_data = gr.components.Dataframe( |
|
|
type="pandas", datatype=["number", "markdown", "markdown", "number"] |
|
|
) |
|
|
with gr.Row(): |
|
|
data_run = gr.Button("Refresh") |
|
|
data_run.click( |
|
|
get_submissions, inputs=gr.Variable("consentful"), outputs=consentful_data |
|
|
) |
|
|
with gr.TabItem("Wild Card π"): |
|
|
with gr.Row(): |
|
|
wildcard_data = gr.components.Dataframe( |
|
|
type="pandas", datatype=["number", "markdown", "markdown", "number"] |
|
|
) |
|
|
with gr.Row(): |
|
|
data_run = gr.Button("Refresh") |
|
|
data_run.click( |
|
|
get_submissions, |
|
|
inputs=gr.Variable("wildcard"), |
|
|
outputs=wildcard_data, |
|
|
) |
|
|
|
|
|
block.load(get_submissions, inputs=gr.Variable("nature"), outputs=nature_data) |
|
|
block.load(get_submissions, inputs=gr.Variable("scifi"), outputs=scifi_data) |
|
|
block.load(get_submissions, inputs=gr.Variable("consentful"), outputs=consentful_data) |
|
|
block.load(get_submissions, inputs=gr.Variable("wildcard"), outputs=wildcard_data) |
|
|
|
|
|
|
|
|
block.launch() |