Spaces:
Build error
Build error
Commit
·
3a9fef7
1
Parent(s):
7f4a53c
app.py
Browse files
app.py
CHANGED
|
@@ -11,20 +11,15 @@ from huggingface_hub import from_pretrained_keras
|
|
| 11 |
|
| 12 |
model = from_pretrained_keras("RobotJelly/GauGAN-Image-generation")
|
| 13 |
|
| 14 |
-
def predict(image_file):
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
#
|
| 18 |
-
print("image_file-->", tf.io.read_file(image_file))
|
| 19 |
-
|
| 20 |
-
image_list = []
|
| 21 |
-
|
| 22 |
-
segmentation_map = image_file.replace("images", "segmentation_map").replace("jpg", "png")
|
| 23 |
|
| 24 |
-
labels = image_file.replace("images", "segmentation_labels").replace("jpg", "bmp")
|
| 25 |
-
print("labels", labels)
|
| 26 |
|
| 27 |
-
image_list = [segmentation_map, image_file, labels]
|
| 28 |
|
| 29 |
image = tf.image.decode_png(tf.io.read_file(image_list[1]), channels=3)
|
| 30 |
image = tf.cast(image, tf.float32) / 127.5 - 1
|
|
@@ -67,10 +62,12 @@ def predict(image_file):
|
|
| 67 |
real_images = final_img_list
|
| 68 |
|
| 69 |
# return tf.squeeze(real_images[1], axis=0), fake_image
|
| 70 |
-
return
|
| 71 |
|
| 72 |
# input
|
| 73 |
-
input = [gr.inputs.Image(type="filepath", label="Ground Truth - Real Image")
|
|
|
|
|
|
|
| 74 |
|
| 75 |
facades_data = []
|
| 76 |
data_dir = 'examples/'
|
|
@@ -80,7 +77,7 @@ for idx, images in enumerate(os.listdir(data_dir)):
|
|
| 80 |
facades_data.append(image)
|
| 81 |
|
| 82 |
# output
|
| 83 |
-
output = [gr.outputs.Image(type="numpy", label="
|
| 84 |
|
| 85 |
title = "GauGAN For Conditional Image Generation"
|
| 86 |
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
|
|
|
|
| 11 |
|
| 12 |
model = from_pretrained_keras("RobotJelly/GauGAN-Image-generation")
|
| 13 |
|
| 14 |
+
def predict(image_file, segmentation_png, bitmap_img):
|
| 15 |
+
image_list = [segmentation_png, image_file, bitmap_img]
|
| 16 |
+
|
| 17 |
+
#segmentation_map = image_file.replace("images", "segmentation_map").replace("jpg", "png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
#labels = image_file.replace("images", "segmentation_labels").replace("jpg", "bmp")
|
| 20 |
+
#print("labels", labels)
|
| 21 |
|
| 22 |
+
#image_list = [segmentation_map, image_file, labels]
|
| 23 |
|
| 24 |
image = tf.image.decode_png(tf.io.read_file(image_list[1]), channels=3)
|
| 25 |
image = tf.cast(image, tf.float32) / 127.5 - 1
|
|
|
|
| 62 |
real_images = final_img_list
|
| 63 |
|
| 64 |
# return tf.squeeze(real_images[1], axis=0), fake_image
|
| 65 |
+
return (fake_image[0]+1)/2
|
| 66 |
|
| 67 |
# input
|
| 68 |
+
input = [gr.inputs.Image(type="filepath", label="Ground Truth - Real Image (jpg)"),
|
| 69 |
+
gr.inputs.Image(type="filepath", label="Segementated image (png)"),
|
| 70 |
+
gr.inputs.Image(type="filepath", label="corresponding bitmap image (bmp)")]
|
| 71 |
|
| 72 |
facades_data = []
|
| 73 |
data_dir = 'examples/'
|
|
|
|
| 77 |
facades_data.append(image)
|
| 78 |
|
| 79 |
# output
|
| 80 |
+
output = [gr.outputs.Image(type="numpy", label="Generated - Conditioned Images")]
|
| 81 |
|
| 82 |
title = "GauGAN For Conditional Image Generation"
|
| 83 |
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
|