Spaces:
Build error
Build error
Commit
·
9b2b534
1
Parent(s):
838dc8b
app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
import tensorflow_addons as tfa
|
| 9 |
+
from tensorflow import keras
|
| 10 |
+
from tensorflow.keras import layers
|
| 11 |
+
|
| 12 |
+
from glob import glob
|
| 13 |
+
from PIL import Image
|
| 14 |
+
|
| 15 |
+
import gradio as gr
|
| 16 |
+
from huggingface_hub import from_pretrained_keras
|
| 17 |
+
|
| 18 |
+
model = from_pretrained_keras("RobotJelly/GauGAN-Image-generation")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def predict(image_file):
|
| 23 |
+
# print(image_file)
|
| 24 |
+
# img = Image.open(image_file)
|
| 25 |
+
# image_file = str(img)
|
| 26 |
+
print("image_file-->", image_file)
|
| 27 |
+
|
| 28 |
+
image_list = []
|
| 29 |
+
|
| 30 |
+
segmentation_map = image_file.replace("images", "segmentation_map").replace("jpg", "png")
|
| 31 |
+
|
| 32 |
+
labels = image_file.replace("images", "segmentation_labels").replace("jpg", "bmp")
|
| 33 |
+
print("labels", labels)
|
| 34 |
+
|
| 35 |
+
image_list = [segmentation_map, image_file, labels]
|
| 36 |
+
|
| 37 |
+
image = tf.image.decode_png(tf.io.read_file(image_list[1]), channels=3)
|
| 38 |
+
image = tf.cast(image, tf.float32) / 127.5 - 1
|
| 39 |
+
|
| 40 |
+
segmentation_file = tf.image.decode_png(tf.io.read_file(image_list[0]), channels=3)
|
| 41 |
+
segmentation_file = tf.cast(segmentation_file, tf.float32)/127.5 - 1
|
| 42 |
+
|
| 43 |
+
label_file = tf.image.decode_bmp(tf.io.read_file(image_list[2]), channels=0)
|
| 44 |
+
label_file = tf.squeeze(label_file)
|
| 45 |
+
|
| 46 |
+
image_list = [segmentation_file, image, label_file]
|
| 47 |
+
|
| 48 |
+
crop_size = tf.convert_to_tensor((256, 256))
|
| 49 |
+
|
| 50 |
+
image_shape = tf.shape(image_list[1])[:2]
|
| 51 |
+
|
| 52 |
+
margins = image_shape - crop_size
|
| 53 |
+
|
| 54 |
+
y1 = tf.random.uniform(shape=(), maxval=margins[0], dtype=tf.int32)
|
| 55 |
+
x1 = tf.random.uniform(shape=(), maxval=margins[1], dtype=tf.int32)
|
| 56 |
+
y2 = y1 + crop_size[0]
|
| 57 |
+
x2 = x1 + crop_size[1]
|
| 58 |
+
|
| 59 |
+
cropped_images = []
|
| 60 |
+
for img in image_list:
|
| 61 |
+
cropped_images.append(img[y1:y2, x1:x2])
|
| 62 |
+
|
| 63 |
+
final_img_list = [tf.expand_dims(cropped_images[0], axis=0), tf.expand_dims(cropped_images[1], axis=0), tf.expand_dims(tf.one_hot(cropped_images[2], 12), axis=0)]
|
| 64 |
+
|
| 65 |
+
# print(final_img_list[0].shape)
|
| 66 |
+
# print(final_img_list[1].shape)
|
| 67 |
+
# print(final_img_list[2].shape)
|
| 68 |
+
|
| 69 |
+
latent_vector = tf.random.normal(shape=(1, 256), mean=0.0, stddev=2.0)
|
| 70 |
+
|
| 71 |
+
# Generate fake images
|
| 72 |
+
# fake_image = tf.squeeze(model.predict([latent_vector, final_img_list[2]]), axis=0)
|
| 73 |
+
fake_image = model.predict([latent_vector, final_img_list[2]])
|
| 74 |
+
|
| 75 |
+
real_images = final_img_list
|
| 76 |
+
|
| 77 |
+
# return tf.squeeze(real_images[1], axis=0), fake_image
|
| 78 |
+
return [(real_images[0][0]+1)/2, (fake_image[0]+1)/2]
|
| 79 |
+
|
| 80 |
+
# input
|
| 81 |
+
input = [gr.inputs.Image(type="filepath", label="Ground Truth - Real Image")]
|
| 82 |
+
|
| 83 |
+
facades_data = []
|
| 84 |
+
data_dir = 'examples/'
|
| 85 |
+
for idx, images in enumerate(os.listdir(data_dir)):
|
| 86 |
+
image = os.path.join(data_dir, images)
|
| 87 |
+
if os.path.isfile(image) and idx < 6:
|
| 88 |
+
facades_data.append(image)
|
| 89 |
+
|
| 90 |
+
# output
|
| 91 |
+
output = [gr.outputs.Image(type="numpy", label="Mask/Segmentation used"), gr.outputs.Image(type="numpy", label="Generated - Conditioned Images")]
|
| 92 |
+
|
| 93 |
+
title = "GauGAN For Conditional Image Generation"
|
| 94 |
+
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
|
| 95 |
+
|
| 96 |
+
gr.Interface(fn=predict, inputs = input, outputs = output, examples=facades_data, allow_flagging=False, analytics_enabled=False,
|
| 97 |
+
title=title, description=description, article="<center>Space By: <u><a href='https://github.com/robotjellyzone'><b>Kavya Bisht</b></a></u> \n Based on <a href='https://keras.io/examples/generative/gaugan/'><b>this notebook</b></a></center>").launch(enable_queue=True, debug=True)
|