ritwikraha
commited on
Commit
·
49e0d56
1
Parent(s):
0bfcfed
add: main script added
Browse files- app.py +267 -0
- nerf/keras_metadata.pb +3 -0
- nerf/saved_model.pb +3 -0
- nerf/variables/variables.data-00000-of-00001 +0 -0
- nerf/variables/variables.index +0 -0
app.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
# Setting random seed to obtain reproducible results.
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
|
| 5 |
+
tf.random.set_seed(42)
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import glob
|
| 9 |
+
import imageio
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import numpy as np
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
from tensorflow import keras
|
| 14 |
+
from tensorflow.keras import layers
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
|
| 17 |
+
# Initialize global variables.
|
| 18 |
+
AUTO = tf.data.AUTOTUNE
|
| 19 |
+
BATCH_SIZE = 1
|
| 20 |
+
NUM_SAMPLES = 32
|
| 21 |
+
POS_ENCODE_DIMS = 16
|
| 22 |
+
EPOCHS = 20
|
| 23 |
+
H = 100
|
| 24 |
+
W = 100
|
| 25 |
+
focal = 138.88
|
| 26 |
+
|
| 27 |
+
def encode_position(x):
|
| 28 |
+
"""Encodes the position into its corresponding Fourier feature.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
x: The input coordinate.
|
| 32 |
+
|
| 33 |
+
Returns:
|
| 34 |
+
Fourier features tensors of the position.
|
| 35 |
+
"""
|
| 36 |
+
positions = [x]
|
| 37 |
+
for i in range(POS_ENCODE_DIMS):
|
| 38 |
+
for fn in [tf.sin, tf.cos]:
|
| 39 |
+
positions.append(fn(2.0 ** i * x))
|
| 40 |
+
return tf.concat(positions, axis=-1)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def get_rays(height, width, focal, pose):
|
| 44 |
+
"""Computes origin point and direction vector of rays.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
height: Height of the image.
|
| 48 |
+
width: Width of the image.
|
| 49 |
+
focal: The focal length between the images and the camera.
|
| 50 |
+
pose: The pose matrix of the camera.
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
Tuple of origin point and direction vector for rays.
|
| 54 |
+
"""
|
| 55 |
+
# Build a meshgrid for the rays.
|
| 56 |
+
i, j = tf.meshgrid(
|
| 57 |
+
tf.range(width, dtype=tf.float32),
|
| 58 |
+
tf.range(height, dtype=tf.float32),
|
| 59 |
+
indexing="xy",
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Normalize the x axis coordinates.
|
| 63 |
+
transformed_i = (i - width * 0.5) / focal
|
| 64 |
+
|
| 65 |
+
# Normalize the y axis coordinates.
|
| 66 |
+
transformed_j = (j - height * 0.5) / focal
|
| 67 |
+
|
| 68 |
+
# Create the direction unit vectors.
|
| 69 |
+
directions = tf.stack([transformed_i, -transformed_j, -tf.ones_like(i)], axis=-1)
|
| 70 |
+
|
| 71 |
+
# Get the camera matrix.
|
| 72 |
+
camera_matrix = pose[:3, :3]
|
| 73 |
+
height_width_focal = pose[:3, -1]
|
| 74 |
+
|
| 75 |
+
# Get origins and directions for the rays.
|
| 76 |
+
transformed_dirs = directions[..., None, :]
|
| 77 |
+
camera_dirs = transformed_dirs * camera_matrix
|
| 78 |
+
ray_directions = tf.reduce_sum(camera_dirs, axis=-1)
|
| 79 |
+
ray_origins = tf.broadcast_to(height_width_focal, tf.shape(ray_directions))
|
| 80 |
+
|
| 81 |
+
# Return the origins and directions.
|
| 82 |
+
return (ray_origins, ray_directions)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def render_flat_rays(ray_origins, ray_directions, near, far, num_samples, rand=False):
|
| 86 |
+
"""Renders the rays and flattens it.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
ray_origins: The origin points for rays.
|
| 90 |
+
ray_directions: The direction unit vectors for the rays.
|
| 91 |
+
near: The near bound of the volumetric scene.
|
| 92 |
+
far: The far bound of the volumetric scene.
|
| 93 |
+
num_samples: Number of sample points in a ray.
|
| 94 |
+
rand: Choice for randomising the sampling strategy.
|
| 95 |
+
|
| 96 |
+
Returns:
|
| 97 |
+
Tuple of flattened rays and sample points on each rays.
|
| 98 |
+
"""
|
| 99 |
+
# Compute 3D query points.
|
| 100 |
+
# Equation: r(t) = o+td -> Building the "t" here.
|
| 101 |
+
t_vals = tf.linspace(near, far, num_samples)
|
| 102 |
+
if rand:
|
| 103 |
+
# Inject uniform noise into sample space to make the sampling
|
| 104 |
+
# continuous.
|
| 105 |
+
shape = list(ray_origins.shape[:-1]) + [num_samples]
|
| 106 |
+
noise = tf.random.uniform(shape=shape) * (far - near) / num_samples
|
| 107 |
+
t_vals = t_vals + noise
|
| 108 |
+
|
| 109 |
+
# Equation: r(t) = o + td -> Building the "r" here.
|
| 110 |
+
rays = ray_origins[..., None, :] + (
|
| 111 |
+
ray_directions[..., None, :] * t_vals[..., None]
|
| 112 |
+
)
|
| 113 |
+
rays_flat = tf.reshape(rays, [-1, 3])
|
| 114 |
+
rays_flat = encode_position(rays_flat)
|
| 115 |
+
return (rays_flat, t_vals)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def map_fn(pose):
|
| 119 |
+
"""Maps individual pose to flattened rays and sample points.
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
pose: The pose matrix of the camera.
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
Tuple of flattened rays and sample points corresponding to the
|
| 126 |
+
camera pose.
|
| 127 |
+
"""
|
| 128 |
+
(ray_origins, ray_directions) = get_rays(height=H, width=W, focal=focal, pose=pose)
|
| 129 |
+
(rays_flat, t_vals) = render_flat_rays(
|
| 130 |
+
ray_origins=ray_origins,
|
| 131 |
+
ray_directions=ray_directions,
|
| 132 |
+
near=2.0,
|
| 133 |
+
far=6.0,
|
| 134 |
+
num_samples=NUM_SAMPLES,
|
| 135 |
+
rand=True,
|
| 136 |
+
)
|
| 137 |
+
return (rays_flat, t_vals)
|
| 138 |
+
|
| 139 |
+
def render_rgb_depth(model, rays_flat, t_vals, rand=True, train=True):
|
| 140 |
+
"""Generates the RGB image and depth map from model prediction.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
model: The MLP model that is trained to predict the rgb and
|
| 144 |
+
volume density of the volumetric scene.
|
| 145 |
+
rays_flat: The flattened rays that serve as the input to
|
| 146 |
+
the NeRF model.
|
| 147 |
+
t_vals: The sample points for the rays.
|
| 148 |
+
rand: Choice to randomise the sampling strategy.
|
| 149 |
+
train: Whether the model is in the training or testing phase.
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
Tuple of rgb image and depth map.
|
| 153 |
+
"""
|
| 154 |
+
# Get the predictions from the nerf model and reshape it.
|
| 155 |
+
if train:
|
| 156 |
+
predictions = model(rays_flat)
|
| 157 |
+
else:
|
| 158 |
+
predictions = model.predict(rays_flat)
|
| 159 |
+
predictions = tf.reshape(predictions, shape=(BATCH_SIZE, H, W, NUM_SAMPLES, 4))
|
| 160 |
+
|
| 161 |
+
# Slice the predictions into rgb and sigma.
|
| 162 |
+
rgb = tf.sigmoid(predictions[..., :-1])
|
| 163 |
+
sigma_a = tf.nn.relu(predictions[..., -1])
|
| 164 |
+
|
| 165 |
+
# Get the distance of adjacent intervals.
|
| 166 |
+
delta = t_vals[..., 1:] - t_vals[..., :-1]
|
| 167 |
+
# delta shape = (num_samples)
|
| 168 |
+
if rand:
|
| 169 |
+
delta = tf.concat(
|
| 170 |
+
[delta, tf.broadcast_to([1e10], shape=(BATCH_SIZE, H, W, 1))], axis=-1
|
| 171 |
+
)
|
| 172 |
+
alpha = 1.0 - tf.exp(-sigma_a * delta)
|
| 173 |
+
else:
|
| 174 |
+
delta = tf.concat(
|
| 175 |
+
[delta, tf.broadcast_to([1e10], shape=(BATCH_SIZE, 1))], axis=-1
|
| 176 |
+
)
|
| 177 |
+
alpha = 1.0 - tf.exp(-sigma_a * delta[:, None, None, :])
|
| 178 |
+
|
| 179 |
+
# Get transmittance.
|
| 180 |
+
exp_term = 1.0 - alpha
|
| 181 |
+
epsilon = 1e-10
|
| 182 |
+
transmittance = tf.math.cumprod(exp_term + epsilon, axis=-1, exclusive=True)
|
| 183 |
+
weights = alpha * transmittance
|
| 184 |
+
rgb = tf.reduce_sum(weights[..., None] * rgb, axis=-2)
|
| 185 |
+
|
| 186 |
+
if rand:
|
| 187 |
+
depth_map = tf.reduce_sum(weights * t_vals, axis=-1)
|
| 188 |
+
else:
|
| 189 |
+
depth_map = tf.reduce_sum(weights * t_vals[:, None, None], axis=-1)
|
| 190 |
+
return (rgb, depth_map)
|
| 191 |
+
|
| 192 |
+
nerf_loaded = tf.keras.models.load_model("nerf", compile=False)
|
| 193 |
+
|
| 194 |
+
def get_translation_t(t):
|
| 195 |
+
"""Get the translation matrix for movement in t."""
|
| 196 |
+
matrix = [
|
| 197 |
+
[1, 0, 0, 0],
|
| 198 |
+
[0, 1, 0, 0],
|
| 199 |
+
[0, 0, 1, t],
|
| 200 |
+
[0, 0, 0, 1],
|
| 201 |
+
]
|
| 202 |
+
return tf.convert_to_tensor(matrix, dtype=tf.float32)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def get_rotation_phi(phi):
|
| 206 |
+
"""Get the rotation matrix for movement in phi."""
|
| 207 |
+
matrix = [
|
| 208 |
+
[1, 0, 0, 0],
|
| 209 |
+
[0, tf.cos(phi), -tf.sin(phi), 0],
|
| 210 |
+
[0, tf.sin(phi), tf.cos(phi), 0],
|
| 211 |
+
[0, 0, 0, 1],
|
| 212 |
+
]
|
| 213 |
+
return tf.convert_to_tensor(matrix, dtype=tf.float32)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def get_rotation_theta(theta):
|
| 217 |
+
"""Get the rotation matrix for movement in theta."""
|
| 218 |
+
matrix = [
|
| 219 |
+
[tf.cos(theta), 0, -tf.sin(theta), 0],
|
| 220 |
+
[0, 1, 0, 0],
|
| 221 |
+
[tf.sin(theta), 0, tf.cos(theta), 0],
|
| 222 |
+
[0, 0, 0, 1],
|
| 223 |
+
]
|
| 224 |
+
return tf.convert_to_tensor(matrix, dtype=tf.float32)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def pose_spherical(theta, phi, t):
|
| 228 |
+
"""
|
| 229 |
+
Get the camera to world matrix for the corresponding theta, phi
|
| 230 |
+
and t.
|
| 231 |
+
"""
|
| 232 |
+
c2w = get_translation_t(t)
|
| 233 |
+
c2w = get_rotation_phi(phi / 180.0 * np.pi) @ c2w
|
| 234 |
+
c2w = get_rotation_theta(theta / 180.0 * np.pi) @ c2w
|
| 235 |
+
c2w = np.array([[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) @ c2w
|
| 236 |
+
return c2w
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def show_rendered_image(r,theta,phi):
|
| 240 |
+
# Get the camera to world matrix.
|
| 241 |
+
c2w = pose_spherical(theta, phi, r)
|
| 242 |
+
|
| 243 |
+
ray_oris, ray_dirs = get_rays(H, W, focal, c2w)
|
| 244 |
+
rays_flat, t_vals = render_flat_rays(
|
| 245 |
+
ray_oris, ray_dirs, near=2.0, far=6.0, num_samples=NUM_SAMPLES, rand=False
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
rgb, depth = render_rgb_depth(
|
| 249 |
+
nerf_loaded, rays_flat[None, ...], t_vals[None, ...], rand=False, train=False
|
| 250 |
+
)
|
| 251 |
+
return(rgb[0], depth[0])
|
| 252 |
+
|
| 253 |
+
# app.py text matter starts here
|
| 254 |
+
st.title('NeRF:Neural Radiance Fields')
|
| 255 |
+
st.subfield('')
|
| 256 |
+
# set the values of r theta phi
|
| 257 |
+
r = -30.0
|
| 258 |
+
theta = st.slider('Enter a value for theta', 0.0, 360.0, 1)
|
| 259 |
+
phi = st.slider('Enter a value for phi', 0.0, 360.0, 1)
|
| 260 |
+
|
| 261 |
+
color,depth = show_rendered_image(r,theta,phi)
|
| 262 |
+
|
| 263 |
+
st.image(color, caption = "Color")
|
| 264 |
+
st.image(depth, caption = "Depth")
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
|
nerf/keras_metadata.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8da49eeec070f24b87d869c2005bdec6fdbd1a1bc1fb6d44c73eb8f89321c6c
|
| 3 |
+
size 21754
|
nerf/saved_model.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9fe43d8f799d56fc7ecdc964172f56541f7cbdaed8644559ed9c7bac553e826e
|
| 3 |
+
size 272106
|
nerf/variables/variables.data-00000-of-00001
ADDED
|
Binary file (174 kB). View file
|
|
|
nerf/variables/variables.index
ADDED
|
Binary file (1.24 kB). View file
|
|
|