Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,21 +19,22 @@ def generate_latent_points(digit, latent_dim, n_samples, n_classes=10):
|
|
| 19 |
return tf.concat([random_latent_vectors, labels], 1)
|
| 20 |
|
| 21 |
def create_digit_samples(digit, n_samples):
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
for
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
description = "Keras implementation for Conditional GAN to generate samples for specific digit of MNIST"
|
| 39 |
article = "Author:<a href=\"https://huggingface.co/rajrathi\"> Rajeshwar Rathi</a>; Based on the keras example by <a href=\"https://keras.io/examples/generative/conditional_gan/\">Sayak Paul</a>"
|
|
|
|
| 19 |
return tf.concat([random_latent_vectors, labels], 1)
|
| 20 |
|
| 21 |
def create_digit_samples(digit, n_samples):
|
| 22 |
+
if digit in range(10):
|
| 23 |
+
latent_dim = 128
|
| 24 |
+
random_vector_labels = generate_latent_points(int(digit), latent_dim, int(n_samples))
|
| 25 |
+
examples = model.predict(random_vector_labels)
|
| 26 |
+
examples = examples * 255.0
|
| 27 |
+
size = ceil(sqrt(n_samples))
|
| 28 |
+
digit_images = np.zeros((28*size, 28*size), dtype=float)
|
| 29 |
+
n = 0
|
| 30 |
+
for i in range(size):
|
| 31 |
+
for j in range(size):
|
| 32 |
+
if n == n_samples:
|
| 33 |
+
break
|
| 34 |
+
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
|
| 35 |
+
n += 1
|
| 36 |
+
digit_images = (digit_images/127.5) -1
|
| 37 |
+
return digit_images
|
| 38 |
|
| 39 |
description = "Keras implementation for Conditional GAN to generate samples for specific digit of MNIST"
|
| 40 |
article = "Author:<a href=\"https://huggingface.co/rajrathi\"> Rajeshwar Rathi</a>; Based on the keras example by <a href=\"https://keras.io/examples/generative/conditional_gan/\">Sayak Paul</a>"
|