Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,12 +18,13 @@ def generate_latent_points(digit, latent_dim, n_samples, n_classes=10):
|
|
| 18 |
labels = tf.keras.utils.to_categorical([digit for _ in range(n_samples)], n_classes)
|
| 19 |
return tf.concat([random_latent_vectors, labels], 1)
|
| 20 |
|
| 21 |
-
def create_digit_samples(digit, n_samples
|
| 22 |
-
|
| 23 |
-
|
|
|
|
| 24 |
examples = examples * 255.0
|
| 25 |
size = ceil(sqrt(n_samples))
|
| 26 |
-
digit_images = np.zeros((28*size, 28*size))
|
| 27 |
n = 0
|
| 28 |
for i in range(size):
|
| 29 |
for j in range(size):
|
|
@@ -31,7 +32,7 @@ def create_digit_samples(digit, n_samples, latent_dim=latent_dim):
|
|
| 31 |
break
|
| 32 |
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
|
| 33 |
n += 1
|
| 34 |
-
|
| 35 |
return digit_images
|
| 36 |
|
| 37 |
description = "This model is based on the example created here: https://keras.io/examples/generative/conditional_gan/"
|
|
|
|
| 18 |
labels = tf.keras.utils.to_categorical([digit for _ in range(n_samples)], n_classes)
|
| 19 |
return tf.concat([random_latent_vectors, labels], 1)
|
| 20 |
|
| 21 |
+
def create_digit_samples(digit, n_samples):
|
| 22 |
+
latent_dim = 128
|
| 23 |
+
random_vector_labels = generate_latent_points(int(digit), latent_dim, int(n_samples))
|
| 24 |
+
examples = model.predict(random_vector_labels)
|
| 25 |
examples = examples * 255.0
|
| 26 |
size = ceil(sqrt(n_samples))
|
| 27 |
+
digit_images = np.zeros((28*size, 28*size), dtype=float)
|
| 28 |
n = 0
|
| 29 |
for i in range(size):
|
| 30 |
for j in range(size):
|
|
|
|
| 32 |
break
|
| 33 |
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
|
| 34 |
n += 1
|
| 35 |
+
digit_images = (digit_images/127.5) -1
|
| 36 |
return digit_images
|
| 37 |
|
| 38 |
description = "This model is based on the example created here: https://keras.io/examples/generative/conditional_gan/"
|