Commit
·
b800b58
1
Parent(s):
e06c361
initial commit
Browse files- .gitignore +161 -0
- conv_lstm.ipynb +430 -0
.gitignore
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# tests and logs
|
| 10 |
+
tests/fixtures/cached_*_text.txt
|
| 11 |
+
logs/
|
| 12 |
+
lightning_logs/
|
| 13 |
+
lang_code_data/
|
| 14 |
+
|
| 15 |
+
# Distribution / packaging
|
| 16 |
+
.Python
|
| 17 |
+
build/
|
| 18 |
+
develop-eggs/
|
| 19 |
+
dist/
|
| 20 |
+
downloads/
|
| 21 |
+
eggs/
|
| 22 |
+
.eggs/
|
| 23 |
+
lib/
|
| 24 |
+
lib64/
|
| 25 |
+
parts/
|
| 26 |
+
sdist/
|
| 27 |
+
var/
|
| 28 |
+
wheels/
|
| 29 |
+
*.egg-info/
|
| 30 |
+
.installed.cfg
|
| 31 |
+
*.egg
|
| 32 |
+
MANIFEST
|
| 33 |
+
|
| 34 |
+
# PyInstaller
|
| 35 |
+
# Usually these files are written by a python script from a template
|
| 36 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 37 |
+
*.manifest
|
| 38 |
+
*.spec
|
| 39 |
+
|
| 40 |
+
# Installer logs
|
| 41 |
+
pip-log.txt
|
| 42 |
+
pip-delete-this-directory.txt
|
| 43 |
+
|
| 44 |
+
# Unit test / coverage reports
|
| 45 |
+
htmlcov/
|
| 46 |
+
.tox/
|
| 47 |
+
.nox/
|
| 48 |
+
.coverage
|
| 49 |
+
.coverage.*
|
| 50 |
+
.cache
|
| 51 |
+
nosetests.xml
|
| 52 |
+
coverage.xml
|
| 53 |
+
*.cover
|
| 54 |
+
.hypothesis/
|
| 55 |
+
.pytest_cache/
|
| 56 |
+
|
| 57 |
+
# Translations
|
| 58 |
+
*.mo
|
| 59 |
+
*.pot
|
| 60 |
+
|
| 61 |
+
# Django stuff:
|
| 62 |
+
*.log
|
| 63 |
+
local_settings.py
|
| 64 |
+
db.sqlite3
|
| 65 |
+
|
| 66 |
+
# Flask stuff:
|
| 67 |
+
instance/
|
| 68 |
+
.webassets-cache
|
| 69 |
+
|
| 70 |
+
# Scrapy stuff:
|
| 71 |
+
.scrapy
|
| 72 |
+
|
| 73 |
+
# Sphinx documentation
|
| 74 |
+
docs/_build/
|
| 75 |
+
|
| 76 |
+
# PyBuilder
|
| 77 |
+
target/
|
| 78 |
+
|
| 79 |
+
# Jupyter Notebook
|
| 80 |
+
.ipynb_checkpoints
|
| 81 |
+
|
| 82 |
+
# IPython
|
| 83 |
+
profile_default/
|
| 84 |
+
ipython_config.py
|
| 85 |
+
|
| 86 |
+
# pyenv
|
| 87 |
+
.python-version
|
| 88 |
+
|
| 89 |
+
# celery beat schedule file
|
| 90 |
+
celerybeat-schedule
|
| 91 |
+
|
| 92 |
+
# SageMath parsed files
|
| 93 |
+
*.sage.py
|
| 94 |
+
|
| 95 |
+
# Environments
|
| 96 |
+
.env
|
| 97 |
+
.venv
|
| 98 |
+
env/
|
| 99 |
+
venv/
|
| 100 |
+
ENV/
|
| 101 |
+
env.bak/
|
| 102 |
+
venv.bak/
|
| 103 |
+
|
| 104 |
+
# Spyder project settings
|
| 105 |
+
.spyderproject
|
| 106 |
+
.spyproject
|
| 107 |
+
|
| 108 |
+
# Rope project settings
|
| 109 |
+
.ropeproject
|
| 110 |
+
|
| 111 |
+
# mkdocs documentation
|
| 112 |
+
/site
|
| 113 |
+
|
| 114 |
+
# mypy
|
| 115 |
+
.mypy_cache/
|
| 116 |
+
.dmypy.json
|
| 117 |
+
dmypy.json
|
| 118 |
+
|
| 119 |
+
# Pyre type checker
|
| 120 |
+
.pyre/
|
| 121 |
+
|
| 122 |
+
# vscode
|
| 123 |
+
.vs
|
| 124 |
+
.vscode
|
| 125 |
+
|
| 126 |
+
# Pycharm
|
| 127 |
+
.idea
|
| 128 |
+
|
| 129 |
+
# TF code
|
| 130 |
+
tensorflow_code
|
| 131 |
+
|
| 132 |
+
# Models
|
| 133 |
+
proc_data
|
| 134 |
+
|
| 135 |
+
# examples
|
| 136 |
+
runs
|
| 137 |
+
/runs_old
|
| 138 |
+
/wandb
|
| 139 |
+
/examples/runs
|
| 140 |
+
/examples/**/*.args
|
| 141 |
+
/examples/rag/sweep
|
| 142 |
+
|
| 143 |
+
# data
|
| 144 |
+
/data
|
| 145 |
+
serialization_dir
|
| 146 |
+
|
| 147 |
+
# emacs
|
| 148 |
+
*.*~
|
| 149 |
+
debug.env
|
| 150 |
+
|
| 151 |
+
# vim
|
| 152 |
+
.*.swp
|
| 153 |
+
|
| 154 |
+
#ctags
|
| 155 |
+
tags
|
| 156 |
+
|
| 157 |
+
# pre-commit
|
| 158 |
+
.pre-commit*
|
| 159 |
+
|
| 160 |
+
# .lock
|
| 161 |
+
*.lock
|
conv_lstm.ipynb
ADDED
|
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "5iJqHKEQx66F"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"# Next-Frame Video Prediction with Convolutional LSTMs\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"**Author:** [Amogh Joshi](https://github.com/amogh7joshi)<br>\n",
|
| 12 |
+
"**Date created:** 2021/06/02<br>\n",
|
| 13 |
+
"**Last modified:** 2021/06/05<br>\n",
|
| 14 |
+
"**Description:** How to build and train a convolutional LSTM model for next-frame video prediction."
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "markdown",
|
| 19 |
+
"metadata": {
|
| 20 |
+
"id": "9vv8zp4vx66K"
|
| 21 |
+
},
|
| 22 |
+
"source": [
|
| 23 |
+
"## Introduction\n",
|
| 24 |
+
"\n",
|
| 25 |
+
"The\n",
|
| 26 |
+
"[Convolutional LSTM](https://papers.nips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf)\n",
|
| 27 |
+
"architectures bring together time series processing and computer vision by\n",
|
| 28 |
+
"introducing a convolutional recurrent cell in a LSTM layer. In this example, we will explore the\n",
|
| 29 |
+
"Convolutional LSTM model in an application to next-frame prediction, the process\n",
|
| 30 |
+
"of predicting what video frames come next given a series of past frames."
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "markdown",
|
| 35 |
+
"metadata": {
|
| 36 |
+
"id": "daG-n305x66K"
|
| 37 |
+
},
|
| 38 |
+
"source": [
|
| 39 |
+
"## Setup"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "code",
|
| 44 |
+
"execution_count": null,
|
| 45 |
+
"metadata": {
|
| 46 |
+
"id": "4Xx9qttUx66L"
|
| 47 |
+
},
|
| 48 |
+
"outputs": [],
|
| 49 |
+
"source": [
|
| 50 |
+
"import numpy as np\n",
|
| 51 |
+
"import matplotlib.pyplot as plt\n",
|
| 52 |
+
"\n",
|
| 53 |
+
"import tensorflow as tf\n",
|
| 54 |
+
"from tensorflow import keras\n",
|
| 55 |
+
"from tensorflow.keras import layers\n",
|
| 56 |
+
"\n",
|
| 57 |
+
"import io\n",
|
| 58 |
+
"import imageio\n",
|
| 59 |
+
"from IPython.display import Image, display\n",
|
| 60 |
+
"from ipywidgets import widgets, Layout, HBox"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "markdown",
|
| 65 |
+
"metadata": {
|
| 66 |
+
"id": "w-uOOdg1x66M"
|
| 67 |
+
},
|
| 68 |
+
"source": [
|
| 69 |
+
"## Dataset Construction\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"For this example, we will be using the\n",
|
| 72 |
+
"[Moving MNIST](http://www.cs.toronto.edu/~nitish/unsupervised_video/)\n",
|
| 73 |
+
"dataset.\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"We will download the dataset and then construct and\n",
|
| 76 |
+
"preprocess training and validation sets.\n",
|
| 77 |
+
"\n",
|
| 78 |
+
"For next-frame prediction, our model will be using a previous frame,\n",
|
| 79 |
+
"which we'll call `f_n`, to predict a new frame, called `f_(n + 1)`.\n",
|
| 80 |
+
"To allow the model to create these predictions, we'll need to process\n",
|
| 81 |
+
"the data such that we have \"shifted\" inputs and outputs, where the\n",
|
| 82 |
+
"input data is frame `x_n`, being used to predict frame `y_(n + 1)`."
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": null,
|
| 88 |
+
"metadata": {
|
| 89 |
+
"id": "H6_vt6q4x66N"
|
| 90 |
+
},
|
| 91 |
+
"outputs": [],
|
| 92 |
+
"source": [
|
| 93 |
+
"# Download and load the dataset.\n",
|
| 94 |
+
"fpath = keras.utils.get_file(\n",
|
| 95 |
+
" \"moving_mnist.npy\",\n",
|
| 96 |
+
" \"http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy\",\n",
|
| 97 |
+
")\n",
|
| 98 |
+
"dataset = np.load(fpath)\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"# Swap the axes representing the number of frames and number of data samples.\n",
|
| 101 |
+
"dataset = np.swapaxes(dataset, 0, 1)\n",
|
| 102 |
+
"# We'll pick out 1000 of the 10000 total examples and use those.\n",
|
| 103 |
+
"dataset = dataset[:1000, ...]\n",
|
| 104 |
+
"# Add a channel dimension since the images are grayscale.\n",
|
| 105 |
+
"dataset = np.expand_dims(dataset, axis=-1)\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"# Split into train and validation sets using indexing to optimize memory.\n",
|
| 108 |
+
"indexes = np.arange(dataset.shape[0])\n",
|
| 109 |
+
"np.random.shuffle(indexes)\n",
|
| 110 |
+
"train_index = indexes[: int(0.9 * dataset.shape[0])]\n",
|
| 111 |
+
"val_index = indexes[int(0.9 * dataset.shape[0]) :]\n",
|
| 112 |
+
"train_dataset = dataset[train_index]\n",
|
| 113 |
+
"val_dataset = dataset[val_index]\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"# Normalize the data to the 0-1 range.\n",
|
| 116 |
+
"train_dataset = train_dataset / 255\n",
|
| 117 |
+
"val_dataset = val_dataset / 255\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"# We'll define a helper function to shift the frames, where\n",
|
| 120 |
+
"# `x` is frames 0 to n - 1, and `y` is frames 1 to n.\n",
|
| 121 |
+
"def create_shifted_frames(data):\n",
|
| 122 |
+
" x = data[:, 0 : data.shape[1] - 1, :, :]\n",
|
| 123 |
+
" y = data[:, 1 : data.shape[1], :, :]\n",
|
| 124 |
+
" return x, y\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"# Apply the processing function to the datasets.\n",
|
| 128 |
+
"x_train, y_train = create_shifted_frames(train_dataset)\n",
|
| 129 |
+
"x_val, y_val = create_shifted_frames(val_dataset)\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"# Inspect the dataset.\n",
|
| 132 |
+
"print(\"Training Dataset Shapes: \" + str(x_train.shape) + \", \" + str(y_train.shape))\n",
|
| 133 |
+
"print(\"Validation Dataset Shapes: \" + str(x_val.shape) + \", \" + str(y_val.shape))"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "markdown",
|
| 138 |
+
"metadata": {
|
| 139 |
+
"id": "wJhm7oM7x66O"
|
| 140 |
+
},
|
| 141 |
+
"source": [
|
| 142 |
+
"## Data Visualization\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"Our data consists of sequences of frames, each of which\n",
|
| 145 |
+
"are used to predict the upcoming frame. Let's take a look\n",
|
| 146 |
+
"at some of these sequential frames."
|
| 147 |
+
]
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"cell_type": "code",
|
| 151 |
+
"execution_count": null,
|
| 152 |
+
"metadata": {
|
| 153 |
+
"id": "jFE2fY1xx66O"
|
| 154 |
+
},
|
| 155 |
+
"outputs": [],
|
| 156 |
+
"source": [
|
| 157 |
+
"# Construct a figure on which we will visualize the images.\n",
|
| 158 |
+
"fig, axes = plt.subplots(4, 5, figsize=(10, 8))\n",
|
| 159 |
+
"\n",
|
| 160 |
+
"# Plot each of the sequential images for one random data example.\n",
|
| 161 |
+
"data_choice = np.random.choice(range(len(train_dataset)), size=1)[0]\n",
|
| 162 |
+
"for idx, ax in enumerate(axes.flat):\n",
|
| 163 |
+
" ax.imshow(np.squeeze(train_dataset[data_choice][idx]), cmap=\"gray\")\n",
|
| 164 |
+
" ax.set_title(f\"Frame {idx + 1}\")\n",
|
| 165 |
+
" ax.axis(\"off\")\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"# Print information and display the figure.\n",
|
| 168 |
+
"print(f\"Displaying frames for example {data_choice}.\")\n",
|
| 169 |
+
"plt.show()"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"cell_type": "markdown",
|
| 174 |
+
"metadata": {
|
| 175 |
+
"id": "jPQQIUm6x66P"
|
| 176 |
+
},
|
| 177 |
+
"source": [
|
| 178 |
+
"## Model Construction\n",
|
| 179 |
+
"\n",
|
| 180 |
+
"To build a Convolutional LSTM model, we will use the\n",
|
| 181 |
+
"`ConvLSTM2D` layer, which will accept inputs of shape\n",
|
| 182 |
+
"`(batch_size, num_frames, width, height, channels)`, and return\n",
|
| 183 |
+
"a prediction movie of the same shape."
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"cell_type": "code",
|
| 188 |
+
"execution_count": null,
|
| 189 |
+
"metadata": {
|
| 190 |
+
"id": "D3OvRaVpx66P"
|
| 191 |
+
},
|
| 192 |
+
"outputs": [],
|
| 193 |
+
"source": [
|
| 194 |
+
"# Construct the input layer with no definite frame size.\n",
|
| 195 |
+
"inp = layers.Input(shape=(None, *x_train.shape[2:]))\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"# We will construct 3 `ConvLSTM2D` layers with batch normalization,\n",
|
| 198 |
+
"# followed by a `Conv3D` layer for the spatiotemporal outputs.\n",
|
| 199 |
+
"x = layers.ConvLSTM2D(\n",
|
| 200 |
+
" filters=64,\n",
|
| 201 |
+
" kernel_size=(5, 5),\n",
|
| 202 |
+
" padding=\"same\",\n",
|
| 203 |
+
" return_sequences=True,\n",
|
| 204 |
+
" activation=\"relu\",\n",
|
| 205 |
+
")(inp)\n",
|
| 206 |
+
"x = layers.BatchNormalization()(x)\n",
|
| 207 |
+
"x = layers.ConvLSTM2D(\n",
|
| 208 |
+
" filters=64,\n",
|
| 209 |
+
" kernel_size=(3, 3),\n",
|
| 210 |
+
" padding=\"same\",\n",
|
| 211 |
+
" return_sequences=True,\n",
|
| 212 |
+
" activation=\"relu\",\n",
|
| 213 |
+
")(x)\n",
|
| 214 |
+
"x = layers.BatchNormalization()(x)\n",
|
| 215 |
+
"x = layers.ConvLSTM2D(\n",
|
| 216 |
+
" filters=64,\n",
|
| 217 |
+
" kernel_size=(1, 1),\n",
|
| 218 |
+
" padding=\"same\",\n",
|
| 219 |
+
" return_sequences=True,\n",
|
| 220 |
+
" activation=\"relu\",\n",
|
| 221 |
+
")(x)\n",
|
| 222 |
+
"x = layers.Conv3D(\n",
|
| 223 |
+
" filters=1, kernel_size=(3, 3, 3), activation=\"sigmoid\", padding=\"same\"\n",
|
| 224 |
+
")(x)\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"# Next, we will build the complete model and compile it.\n",
|
| 227 |
+
"model = keras.models.Model(inp, x)\n",
|
| 228 |
+
"model.compile(\n",
|
| 229 |
+
" loss=keras.losses.binary_crossentropy, optimizer=keras.optimizers.Adam(),\n",
|
| 230 |
+
")"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "markdown",
|
| 235 |
+
"metadata": {
|
| 236 |
+
"id": "Nd0VLhrvx66Q"
|
| 237 |
+
},
|
| 238 |
+
"source": [
|
| 239 |
+
"## Model Training\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"With our model and data constructed, we can now train the model."
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "code",
|
| 246 |
+
"execution_count": null,
|
| 247 |
+
"metadata": {
|
| 248 |
+
"id": "v9U57leux66Q"
|
| 249 |
+
},
|
| 250 |
+
"outputs": [],
|
| 251 |
+
"source": [
|
| 252 |
+
"# Define some callbacks to improve training.\n",
|
| 253 |
+
"early_stopping = keras.callbacks.EarlyStopping(monitor=\"val_loss\", patience=10)\n",
|
| 254 |
+
"reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor=\"val_loss\", patience=5)\n",
|
| 255 |
+
"\n",
|
| 256 |
+
"# Define modifiable training hyperparameters.\n",
|
| 257 |
+
"epochs = 20\n",
|
| 258 |
+
"batch_size = 5\n",
|
| 259 |
+
"\n",
|
| 260 |
+
"# Fit the model to the training data.\n",
|
| 261 |
+
"model.fit(\n",
|
| 262 |
+
" x_train,\n",
|
| 263 |
+
" y_train,\n",
|
| 264 |
+
" batch_size=batch_size,\n",
|
| 265 |
+
" epochs=epochs,\n",
|
| 266 |
+
" validation_data=(x_val, y_val),\n",
|
| 267 |
+
" callbacks=[early_stopping, reduce_lr],\n",
|
| 268 |
+
")"
|
| 269 |
+
]
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"cell_type": "markdown",
|
| 273 |
+
"metadata": {
|
| 274 |
+
"id": "RxB7zZIxx66R"
|
| 275 |
+
},
|
| 276 |
+
"source": [
|
| 277 |
+
"## Frame Prediction Visualizations\n",
|
| 278 |
+
"\n",
|
| 279 |
+
"With our model now constructed and trained, we can generate\n",
|
| 280 |
+
"some example frame predictions based on a new video.\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"We'll pick a random example from the validation set and\n",
|
| 283 |
+
"then choose the first ten frames from them. From there, we can\n",
|
| 284 |
+
"allow the model to predict 10 new frames, which we can compare\n",
|
| 285 |
+
"to the ground truth frame predictions."
|
| 286 |
+
]
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"cell_type": "code",
|
| 290 |
+
"execution_count": null,
|
| 291 |
+
"metadata": {
|
| 292 |
+
"id": "qsujRd4Ex66R"
|
| 293 |
+
},
|
| 294 |
+
"outputs": [],
|
| 295 |
+
"source": [
|
| 296 |
+
"# Select a random example from the validation dataset.\n",
|
| 297 |
+
"example = val_dataset[np.random.choice(range(len(val_dataset)), size=1)[0]]\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"# Pick the first/last ten frames from the example.\n",
|
| 300 |
+
"frames = example[:10, ...]\n",
|
| 301 |
+
"original_frames = example[10:, ...]\n",
|
| 302 |
+
"\n",
|
| 303 |
+
"# Predict a new set of 10 frames.\n",
|
| 304 |
+
"for _ in range(10):\n",
|
| 305 |
+
" # Extract the model's prediction and post-process it.\n",
|
| 306 |
+
" new_prediction = model.predict(np.expand_dims(frames, axis=0))\n",
|
| 307 |
+
" new_prediction = np.squeeze(new_prediction, axis=0)\n",
|
| 308 |
+
" predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n",
|
| 309 |
+
"\n",
|
| 310 |
+
" # Extend the set of prediction frames.\n",
|
| 311 |
+
" frames = np.concatenate((frames, predicted_frame), axis=0)\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"# Construct a figure for the original and new frames.\n",
|
| 314 |
+
"fig, axes = plt.subplots(2, 10, figsize=(20, 4))\n",
|
| 315 |
+
"\n",
|
| 316 |
+
"# Plot the original frames.\n",
|
| 317 |
+
"for idx, ax in enumerate(axes[0]):\n",
|
| 318 |
+
" ax.imshow(np.squeeze(original_frames[idx]), cmap=\"gray\")\n",
|
| 319 |
+
" ax.set_title(f\"Frame {idx + 11}\")\n",
|
| 320 |
+
" ax.axis(\"off\")\n",
|
| 321 |
+
"\n",
|
| 322 |
+
"# Plot the new frames.\n",
|
| 323 |
+
"new_frames = frames[10:, ...]\n",
|
| 324 |
+
"for idx, ax in enumerate(axes[1]):\n",
|
| 325 |
+
" ax.imshow(np.squeeze(new_frames[idx]), cmap=\"gray\")\n",
|
| 326 |
+
" ax.set_title(f\"Frame {idx + 11}\")\n",
|
| 327 |
+
" ax.axis(\"off\")\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"# Display the figure.\n",
|
| 330 |
+
"plt.show()"
|
| 331 |
+
]
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"cell_type": "markdown",
|
| 335 |
+
"metadata": {
|
| 336 |
+
"id": "78OrJXZfx66R"
|
| 337 |
+
},
|
| 338 |
+
"source": [
|
| 339 |
+
"## Predicted Videos\n",
|
| 340 |
+
"\n",
|
| 341 |
+
"Finally, we'll pick a few examples from the validation set\n",
|
| 342 |
+
"and construct some GIFs with them to see the model's\n",
|
| 343 |
+
"predicted videos."
|
| 344 |
+
]
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"cell_type": "code",
|
| 348 |
+
"execution_count": null,
|
| 349 |
+
"metadata": {
|
| 350 |
+
"id": "ncMx34rLx66R"
|
| 351 |
+
},
|
| 352 |
+
"outputs": [],
|
| 353 |
+
"source": [
|
| 354 |
+
"# Select a few random examples from the dataset.\n",
|
| 355 |
+
"examples = val_dataset[np.random.choice(range(len(val_dataset)), size=5)]\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"# Iterate over the examples and predict the frames.\n",
|
| 358 |
+
"predicted_videos = []\n",
|
| 359 |
+
"for example in examples:\n",
|
| 360 |
+
" # Pick the first/last ten frames from the example.\n",
|
| 361 |
+
" frames = example[:10, ...]\n",
|
| 362 |
+
" original_frames = example[10:, ...]\n",
|
| 363 |
+
" new_predictions = np.zeros(shape=(10, *frames[0].shape))\n",
|
| 364 |
+
"\n",
|
| 365 |
+
" # Predict a new set of 10 frames.\n",
|
| 366 |
+
" for i in range(10):\n",
|
| 367 |
+
" # Extract the model's prediction and post-process it.\n",
|
| 368 |
+
" frames = example[: 10 + i + 1, ...]\n",
|
| 369 |
+
" new_prediction = model.predict(np.expand_dims(frames, axis=0))\n",
|
| 370 |
+
" new_prediction = np.squeeze(new_prediction, axis=0)\n",
|
| 371 |
+
" predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n",
|
| 372 |
+
"\n",
|
| 373 |
+
" # Extend the set of prediction frames.\n",
|
| 374 |
+
" new_predictions[i] = predicted_frame\n",
|
| 375 |
+
"\n",
|
| 376 |
+
" # Create and save GIFs for each of the ground truth/prediction images.\n",
|
| 377 |
+
" for frame_set in [original_frames, new_predictions]:\n",
|
| 378 |
+
" # Construct a GIF from the selected video frames.\n",
|
| 379 |
+
" current_frames = np.squeeze(frame_set)\n",
|
| 380 |
+
" current_frames = current_frames[..., np.newaxis] * np.ones(3)\n",
|
| 381 |
+
" current_frames = (current_frames * 255).astype(np.uint8)\n",
|
| 382 |
+
" current_frames = list(current_frames)\n",
|
| 383 |
+
"\n",
|
| 384 |
+
" # Construct a GIF from the frames.\n",
|
| 385 |
+
" with io.BytesIO() as gif:\n",
|
| 386 |
+
" imageio.mimsave(gif, current_frames, \"GIF\", fps=5)\n",
|
| 387 |
+
" predicted_videos.append(gif.getvalue())\n",
|
| 388 |
+
"\n",
|
| 389 |
+
"# Display the videos.\n",
|
| 390 |
+
"print(\" Truth\\tPrediction\")\n",
|
| 391 |
+
"for i in range(0, len(predicted_videos), 2):\n",
|
| 392 |
+
" # Construct and display an `HBox` with the ground truth and prediction.\n",
|
| 393 |
+
" box = HBox(\n",
|
| 394 |
+
" [\n",
|
| 395 |
+
" widgets.Image(value=predicted_videos[i]),\n",
|
| 396 |
+
" widgets.Image(value=predicted_videos[i + 1]),\n",
|
| 397 |
+
" ]\n",
|
| 398 |
+
" )\n",
|
| 399 |
+
" display(box)"
|
| 400 |
+
]
|
| 401 |
+
}
|
| 402 |
+
],
|
| 403 |
+
"metadata": {
|
| 404 |
+
"colab": {
|
| 405 |
+
"collapsed_sections": [],
|
| 406 |
+
"name": "conv_lstm",
|
| 407 |
+
"provenance": [],
|
| 408 |
+
"toc_visible": true
|
| 409 |
+
},
|
| 410 |
+
"kernelspec": {
|
| 411 |
+
"display_name": "Python 3",
|
| 412 |
+
"language": "python",
|
| 413 |
+
"name": "python3"
|
| 414 |
+
},
|
| 415 |
+
"language_info": {
|
| 416 |
+
"codemirror_mode": {
|
| 417 |
+
"name": "ipython",
|
| 418 |
+
"version": 3
|
| 419 |
+
},
|
| 420 |
+
"file_extension": ".py",
|
| 421 |
+
"mimetype": "text/x-python",
|
| 422 |
+
"name": "python",
|
| 423 |
+
"nbconvert_exporter": "python",
|
| 424 |
+
"pygments_lexer": "ipython3",
|
| 425 |
+
"version": "3.7.0"
|
| 426 |
+
}
|
| 427 |
+
},
|
| 428 |
+
"nbformat": 4,
|
| 429 |
+
"nbformat_minor": 0
|
| 430 |
+
}
|