Commit
·
d65aa43
1
Parent(s):
aa1e949
add app.py
Browse files- app.py +100 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import yaml
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
import imageio, cv2
|
| 7 |
+
from moviepy.editor import *
|
| 8 |
+
from skimage.transform import resize
|
| 9 |
+
from skimage import img_as_ubyte
|
| 10 |
+
from skimage.color import rgb2gray
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from tensorflow import keras
|
| 14 |
+
|
| 15 |
+
# load model
|
| 16 |
+
model = keras.models.load_model('saved_model')
|
| 17 |
+
|
| 18 |
+
# Examples
|
| 19 |
+
samples = []
|
| 20 |
+
example_driving = os.listdir('asset/driving')
|
| 21 |
+
for video in example_driving:
|
| 22 |
+
samples.append([f'asset/driving/{video}', 0.5, False])
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def inference(driving,
|
| 26 |
+
split_pred = 0.4, # predict 0.6% of video
|
| 27 |
+
predict_one = False, # Whether to predict a sliding one frame or all frames at once
|
| 28 |
+
output_name = 'output.mp4',
|
| 29 |
+
output_path = 'asset/output',
|
| 30 |
+
cpu = False,
|
| 31 |
+
):
|
| 32 |
+
|
| 33 |
+
# driving
|
| 34 |
+
reader = imageio.get_reader(driving)
|
| 35 |
+
fps = reader.get_meta_data()['fps']
|
| 36 |
+
driving_video = []
|
| 37 |
+
try:
|
| 38 |
+
for im in reader:
|
| 39 |
+
driving_video.append(im)
|
| 40 |
+
except RuntimeError:
|
| 41 |
+
pass
|
| 42 |
+
reader.close()
|
| 43 |
+
driving_video = [rgb2gray(resize(frame, (64, 64)))[..., np.newaxis] for frame in driving_video]
|
| 44 |
+
|
| 45 |
+
example = np.array(driving_video)
|
| 46 |
+
print(example.shape)
|
| 47 |
+
# Pick the first/last ten frames from the example.
|
| 48 |
+
start_pred_id = int(split_pred * example.shape[0]) # prediction starts from frame start_pred_id
|
| 49 |
+
frames = example[:start_pred_id, ...]
|
| 50 |
+
original_frames = example[start_pred_id:, ...]
|
| 51 |
+
new_predictions = np.zeros(shape=(example.shape[0] - start_pred_id, *frames[0].shape))
|
| 52 |
+
|
| 53 |
+
# Predict a new set of 10 frames.
|
| 54 |
+
for i in range(example.shape[0] - start_pred_id):
|
| 55 |
+
# Extract the model's prediction and post-process it.
|
| 56 |
+
if predict_one:
|
| 57 |
+
frames = example[: start_pred_id + i + 1, ...]
|
| 58 |
+
else:
|
| 59 |
+
frames = np.concatenate((example[: start_pred_id+1 , ...], new_predictions[:i, ...]), axis=0)
|
| 60 |
+
new_prediction = model.predict(np.expand_dims(frames, axis=0))
|
| 61 |
+
new_prediction = np.squeeze(new_prediction, axis=0)
|
| 62 |
+
predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)
|
| 63 |
+
|
| 64 |
+
# Extend the set of prediction frames.
|
| 65 |
+
new_predictions[i] = predicted_frame
|
| 66 |
+
|
| 67 |
+
# Create and save MP4s for each of the ground truth/prediction images.
|
| 68 |
+
def postprocess(frame_set, save_file):
|
| 69 |
+
# Construct a GIF from the selected video frames.
|
| 70 |
+
current_frames = np.squeeze(frame_set)
|
| 71 |
+
current_frames = current_frames[..., np.newaxis] * np.ones(3)
|
| 72 |
+
current_frames = (current_frames * 255).astype(np.uint8)
|
| 73 |
+
current_frames = list(current_frames)
|
| 74 |
+
|
| 75 |
+
print(f'{output_path}/{save_file}')
|
| 76 |
+
imageio.mimsave(f'{output_path}/{save_file}', current_frames, fps=fps)
|
| 77 |
+
|
| 78 |
+
# save video
|
| 79 |
+
os.makedirs(output_path, exist_ok=True)
|
| 80 |
+
postprocess(original_frames, "original.mp4")
|
| 81 |
+
postprocess(new_predictions, output_name)
|
| 82 |
+
return f'{output_path}/{output_name}', f'{output_path}/original.mp4'
|
| 83 |
+
|
| 84 |
+
iface = gr.Interface(
|
| 85 |
+
inference, # main function
|
| 86 |
+
inputs = [
|
| 87 |
+
gr.inputs.Video(label='Video', type='mp4'),
|
| 88 |
+
gr.inputs.Slider(minimum=.1, maximum=.9, default=.5, step=.001, label="prediction start"),
|
| 89 |
+
gr.inputs.Checkbox(label="predict one frame only", default=False),
|
| 90 |
+
|
| 91 |
+
],
|
| 92 |
+
outputs = [
|
| 93 |
+
gr.outputs.Video(label='result'), # generated video
|
| 94 |
+
gr.outputs.Video(label='ground truth') # same part of original video
|
| 95 |
+
],
|
| 96 |
+
|
| 97 |
+
title = 'Next-Frame Video Prediction with Convolutional LSTMs',
|
| 98 |
+
description = "This app is an unofficial demo web app of the Next-Frame Video Prediction with Convolutional LSTMs by Keras.",
|
| 99 |
+
examples = samples,
|
| 100 |
+
).launch(enable_queue=True, cache_examples=True)
|
requirements.txt
ADDED
|
File without changes
|