Commit
·
609963b
1
Parent(s):
30ad04a
add application file
Browse files- app.py +178 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from tensorflow import keras
|
| 5 |
+
import tensorflow_io as tfio
|
| 6 |
+
from huggingface_hub import from_pretrained_keras
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
model = from_pretrained_keras("keras-io/ctc_asr", compile=False)
|
| 10 |
+
|
| 11 |
+
characters = [x for x in "abcdefghijklmnopqrstuvwxyz'?! "]
|
| 12 |
+
# Mapping characters to integers
|
| 13 |
+
char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="")
|
| 14 |
+
# Mapping integers back to original characters
|
| 15 |
+
num_to_char = keras.layers.StringLookup(
|
| 16 |
+
vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# An integer scalar Tensor. The window length in samples.
|
| 20 |
+
frame_length = 256
|
| 21 |
+
# An integer scalar Tensor. The number of samples to step.
|
| 22 |
+
frame_step = 160
|
| 23 |
+
# An integer scalar Tensor. The size of the FFT to apply.
|
| 24 |
+
# If not provided, uses the smallest power of 2 enclosing frame_length.
|
| 25 |
+
fft_length = 384
|
| 26 |
+
|
| 27 |
+
SAMPLE_RATE = 22050
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def decode_batch_predictions(pred):
|
| 31 |
+
input_len = np.ones(pred.shape[0]) * pred.shape[1]
|
| 32 |
+
# Use greedy search. For complex tasks, you can use beam search
|
| 33 |
+
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]
|
| 34 |
+
# Iterate over the results and get back the text
|
| 35 |
+
output_text = []
|
| 36 |
+
for result in results:
|
| 37 |
+
result = tf.strings.reduce_join(num_to_char(result)).numpy().decode("utf-8")
|
| 38 |
+
output_text.append(result)
|
| 39 |
+
return output_text
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def load_16k_audio_wav(filename):
|
| 43 |
+
# Read file content
|
| 44 |
+
file_content = tf.io.read_file(filename)
|
| 45 |
+
|
| 46 |
+
# Decode audio wave
|
| 47 |
+
audio_wav, sample_rate = tf.audio.decode_wav(file_content, desired_channels=1)
|
| 48 |
+
audio_wav = tf.squeeze(audio_wav, axis=-1)
|
| 49 |
+
sample_rate = tf.cast(sample_rate, dtype=tf.int64)
|
| 50 |
+
|
| 51 |
+
# Resample to 16k
|
| 52 |
+
audio_wav = tfio.audio.resample(
|
| 53 |
+
audio_wav, rate_in=sample_rate, rate_out=SAMPLE_RATE
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
return audio_wav
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def mic_to_tensor(recorded_audio_file):
|
| 60 |
+
sample_rate, audio = recorded_audio_file
|
| 61 |
+
|
| 62 |
+
audio_wav = tf.constant(audio, dtype=tf.float32)
|
| 63 |
+
if tf.rank(audio_wav) > 1:
|
| 64 |
+
audio_wav = tf.reduce_mean(audio_wav, axis=1)
|
| 65 |
+
audio_wav = tfio.audio.resample(
|
| 66 |
+
audio_wav, rate_in=sample_rate, rate_out=SAMPLE_RATE
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
audio_wav = tf.divide(audio_wav, tf.reduce_max(tf.abs(audio_wav)))
|
| 70 |
+
|
| 71 |
+
return audio_wav
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def tensor_to_predictions(audio_tensor):
|
| 75 |
+
# 3. Change type to float
|
| 76 |
+
audio_tensor = tf.cast(audio_tensor, tf.float32)
|
| 77 |
+
|
| 78 |
+
# 4. Get the spectrogram
|
| 79 |
+
spectrogram = tf.signal.stft(
|
| 80 |
+
audio_tensor,
|
| 81 |
+
frame_length=frame_length,
|
| 82 |
+
frame_step=frame_step,
|
| 83 |
+
fft_length=fft_length,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# 5. We only need the magnitude, which can be derived by applying tf.abs
|
| 87 |
+
spectrogram = tf.abs(spectrogram)
|
| 88 |
+
spectrogram = tf.math.pow(spectrogram, 0.5)
|
| 89 |
+
|
| 90 |
+
# 6. normalisation
|
| 91 |
+
means = tf.math.reduce_mean(spectrogram, 1, keepdims=True)
|
| 92 |
+
stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)
|
| 93 |
+
spectrogram = (spectrogram - means) / (stddevs + 1e-10)
|
| 94 |
+
|
| 95 |
+
spectrogram = tf.expand_dims(spectrogram, axis=0)
|
| 96 |
+
|
| 97 |
+
batch_predictions = model.predict(spectrogram)
|
| 98 |
+
batch_predictions = decode_batch_predictions(batch_predictions)
|
| 99 |
+
return batch_predictions
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def clear_inputs_and_outputs():
|
| 103 |
+
return [None, None, None]
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def predict(recorded_audio_file, uploaded_audio_file):
|
| 107 |
+
# 1. Read wav file
|
| 108 |
+
if recorded_audio_file:
|
| 109 |
+
audio_tensor = mic_to_tensor(recorded_audio_file)
|
| 110 |
+
else:
|
| 111 |
+
audio_tensor = load_16k_audio_wav(uploaded_audio_file)
|
| 112 |
+
|
| 113 |
+
prediction = tensor_to_predictions(audio_tensor)[0]
|
| 114 |
+
return prediction
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# gr.Interface(
|
| 118 |
+
# infer,
|
| 119 |
+
# inputs=gr.Audio(source="microphone", type="filepath"),
|
| 120 |
+
# outputs=gr.Textbox(lines=5, label="Input Text"),
|
| 121 |
+
# #title=title,
|
| 122 |
+
# #description=description,
|
| 123 |
+
# #article=article,
|
| 124 |
+
# #examples=examples,
|
| 125 |
+
# enable_queue=True,
|
| 126 |
+
# ).launch(debug=True)
|
| 127 |
+
|
| 128 |
+
# Main function
|
| 129 |
+
if __name__ == "__main__":
|
| 130 |
+
demo = gr.Blocks()
|
| 131 |
+
|
| 132 |
+
with demo:
|
| 133 |
+
gr.Markdown(
|
| 134 |
+
"""
|
| 135 |
+
<center><h1>Automatic Speech Recognition using CTC</h1></center> \
|
| 136 |
+
This space is a demo of Automatic Speech Recognition using Keras trained on LJSpeech dataset.<br> \
|
| 137 |
+
In this space, you can record your voice or upload a wav file and the model will predict the words spoken in English<br><br>
|
| 138 |
+
"""
|
| 139 |
+
)
|
| 140 |
+
with gr.Row():
|
| 141 |
+
## Input
|
| 142 |
+
with gr.Column():
|
| 143 |
+
mic_input = gr.Audio(source="microphone", label="Record your own voice")
|
| 144 |
+
upl_input = gr.Audio(
|
| 145 |
+
source="upload", type="filepath", label="Upload a wav file"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
with gr.Row():
|
| 149 |
+
clr_btn = gr.Button(value="Clear", variant="secondary")
|
| 150 |
+
prd_btn = gr.Button(value="Predict")
|
| 151 |
+
|
| 152 |
+
# Outputs
|
| 153 |
+
with gr.Column():
|
| 154 |
+
lbl_output = gr.Label(label="Text")
|
| 155 |
+
|
| 156 |
+
# Credits
|
| 157 |
+
with gr.Row():
|
| 158 |
+
gr.Markdown(
|
| 159 |
+
"""
|
| 160 |
+
<h4>Credits</h4>
|
| 161 |
+
Author: <a href="https://twitter.com/anuragcomm"> Anurag Singh</a>.<br>
|
| 162 |
+
Based on the following Keras example <a href="https://keras.io/examples/audio/ctc_asr">Automatic Speech Recognition using CTC</a> by <a href="https://rbouadjenek.github.io/">Mohamed Reda Bouadjenek</a> and <a href="https://www.linkedin.com/in/parkerhuynh/">Ngoc Dung Huynh</a><br>
|
| 163 |
+
Check out the model <a href="https://huggingface.co/keras-io/ctc_asr">here</a>
|
| 164 |
+
"""
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
clr_btn.click(
|
| 168 |
+
fn=clear_inputs_and_outputs,
|
| 169 |
+
inputs=[],
|
| 170 |
+
outputs=[mic_input, upl_input, lbl_output],
|
| 171 |
+
)
|
| 172 |
+
prd_btn.click(
|
| 173 |
+
fn=predict,
|
| 174 |
+
inputs=[mic_input, upl_input],
|
| 175 |
+
outputs=[lbl_output],
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
matplotlib
|
| 3 |
+
tensorflow==2.8.2
|
| 4 |
+
tensorflow_io==0.25.0
|