Spaces:
Runtime error
Runtime error
Commit
·
36071c0
1
Parent(s):
9bdfb74
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
import huggingface_hub as hf_hub
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
num_rows = 3
|
| 7 |
+
num_cols = 3
|
| 8 |
+
num_images = num_rows * num_cols
|
| 9 |
+
image_size = 64
|
| 10 |
+
plot_image_size = 64
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def load_model():
|
| 14 |
+
model = hf_hub.from_pretrained_keras("beresandras/denoising-diffusion-model")
|
| 15 |
+
return model
|
| 16 |
+
|
| 17 |
+
def diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate):
|
| 18 |
+
start_angle = tf.acos(max_signal_rate)
|
| 19 |
+
end_angle = tf.acos(min_signal_rate)
|
| 20 |
+
|
| 21 |
+
diffusion_angles = start_angle + diffusion_times * (end_angle - start_angle)
|
| 22 |
+
|
| 23 |
+
signal_rates = tf.cos(diffusion_angles)
|
| 24 |
+
noise_rates = tf.sin(diffusion_angles)
|
| 25 |
+
|
| 26 |
+
return noise_rates, signal_rates
|
| 27 |
+
|
| 28 |
+
def generate_images(model, num_images, diffusion_steps, stochasticity, min_signal_rate, max_signal_rate):
|
| 29 |
+
step_size = 1.0 / diffusion_steps
|
| 30 |
+
initial_noise = tf.random.normal(shape=(num_images, image_size, image_size, 3))
|
| 31 |
+
|
| 32 |
+
noisy_images = initial_noise
|
| 33 |
+
for step in range(diffusion_steps):
|
| 34 |
+
diffusion_times = tf.ones((num_images, 1, 1, 1)) - step * step_size
|
| 35 |
+
next_diffusion_times = diffusion_times - step_size
|
| 36 |
+
|
| 37 |
+
noise_rates, signal_rates = diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate)
|
| 38 |
+
next_noise_rates, next_signal_rates = diffusion_schedule(next_diffusion_times, min_signal_rate, max_signal_rate)
|
| 39 |
+
|
| 40 |
+
sample_noises = tf.random.normal(shape=(num_images, image_size, image_size, 3))
|
| 41 |
+
sample_noise_rates = stochasticity * (1.0 - (signal_rates / next_signal_rates)**2)**0.5 * (next_noise_rates / noise_rates)
|
| 42 |
+
|
| 43 |
+
pred_noises = model([noisy_images, noise_rates])
|
| 44 |
+
pred_images = (noisy_images - noise_rates * pred_noises) / signal_rates
|
| 45 |
+
noisy_images = (
|
| 46 |
+
next_signal_rates * pred_images
|
| 47 |
+
+ (next_noise_rates**2 - sample_noise_rates**2)**0.5 * pred_noises
|
| 48 |
+
+ sample_noise_rates * sample_noises
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
generated_images = tf.clip_by_value(0.5 + 0.3 * pred_images, 0.0, 1.0)
|
| 52 |
+
generated_images = tf.image.resize(
|
| 53 |
+
generated_images, (plot_image_size, plot_image_size), method="nearest"
|
| 54 |
+
)
|
| 55 |
+
return generated_images.numpy()
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
model = load_model()
|
| 59 |
+
gr.Interface(
|
| 60 |
+
generate_images,
|
| 61 |
+
inputs=[
|
| 62 |
+
model,
|
| 63 |
+
num_images,
|
| 64 |
+
gr.inputs.Slider(1, 20, default=10, label="Diffusion steps"),
|
| 65 |
+
gr.inputs.Slider(0.0, 1.0, step=0.05, default=0.0, label="Stochasticity"),
|
| 66 |
+
gr.inputs.Slider(0.02, 0.10, step=0.01, default=0.02, label="Minimal signal rate"),
|
| 67 |
+
gr.inputs.Slider(0.80, 0.95, step=0.01, default=0.95, label="Maximal signal rate"),
|
| 68 |
+
],
|
| 69 |
+
outputs="image",
|
| 70 |
+
).launch()
|