Spaces:
Build error
Build error
Create new file
Browse files
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import from_pretrained_keras
|
| 2 |
+
import numpy as np
|
| 3 |
+
import json
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import matplotlib.image as mpimg
|
| 8 |
+
|
| 9 |
+
# load config
|
| 10 |
+
with open("image_paths.json", 'r') as f:
|
| 11 |
+
image_paths = json.load(f)
|
| 12 |
+
image_embeddings = np.load("image_embeddings.npy")
|
| 13 |
+
text_encoder = from_pretrained_keras("keras-io/dual-encoder-image-search")
|
| 14 |
+
|
| 15 |
+
def find_matches(image_paths, image_embeddings, queries, k=9, normalize=True):
|
| 16 |
+
# Get the embedding for the query.
|
| 17 |
+
query_embedding = text_encoder(tf.convert_to_tensor(queries))
|
| 18 |
+
# Normalize the query and the image embeddings.
|
| 19 |
+
if normalize:
|
| 20 |
+
image_embeddings = tf.math.l2_normalize(image_embeddings, axis=1)
|
| 21 |
+
query_embedding = tf.math.l2_normalize(query_embedding, axis=1)
|
| 22 |
+
# Compute the dot product between the query and the image embeddings.
|
| 23 |
+
dot_similarity = tf.matmul(query_embedding, image_embeddings, transpose_b=True)
|
| 24 |
+
# Retrieve top k indices.
|
| 25 |
+
results = tf.math.top_k(dot_similarity, k).indices.numpy()
|
| 26 |
+
# Return matching image paths.
|
| 27 |
+
return [[image_paths[idx] for idx in indices] for indices in results]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def inference(query):
|
| 31 |
+
matches = find_matches(image_paths, image_embeddings, [query], normalize=True)[0]
|
| 32 |
+
plt.figure(figsize=(20, 20))
|
| 33 |
+
for i in range(9):
|
| 34 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 35 |
+
plt.imshow(mpimg.imread(matches[i]))
|
| 36 |
+
plt.axis("off")
|
| 37 |
+
plt.savefig("img.png")
|
| 38 |
+
return "img.png"
|
| 39 |
+
|
| 40 |
+
examples= ['a family standing next to the ocean on a sandy beach with a surf board',
|
| 41 |
+
'a group of people sitting in an audience with pen and paper',
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
gr.Interface(
|
| 45 |
+
fn=inference,
|
| 46 |
+
title="Natural language image search with a Dual Encoder",
|
| 47 |
+
description = "Implementation of a dual encoder model for retrieving images that match natural language queries (Note: for demo purposes, only 1k images were used as search space)",
|
| 48 |
+
inputs="text",
|
| 49 |
+
examples=examples,
|
| 50 |
+
outputs="image",
|
| 51 |
+
cache_examples=False,
|
| 52 |
+
article = "Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the keras example from <a href=\"https://keras.io/examples/nlp/nl_image_search/\">Khalid Salama</a>",
|
| 53 |
+
).launch(debug=True, enable_queue=True)
|