Spaces:
Runtime error
Runtime error
| from abc import ABC, abstractmethod | |
| from typing import Any, Dict, List, Optional, Union | |
| import PIL.Image as Image | |
| class ImageGenerator(ABC): | |
| """Abstract base class for text-to-image models.""" | |
| def generate(self, prompt: str, **kwargs) -> Image.Image: | |
| """Generate an image from a text prompt. | |
| Args: | |
| prompt: The text prompt to generate from | |
| **kwargs: Additional model-specific parameters | |
| Returns: | |
| A PIL Image object | |
| """ | |
| pass | |
| class ImageSimilarityMetric(ABC): | |
| """Abstract base class for image similarity metrics.""" | |
| def compute(self, generated_img: Image.Image, target_img: Image.Image) -> float: | |
| """Compute similarity score between generated and target images. | |
| Args: | |
| generated_img: The generated image to evaluate | |
| target_img: The target image to compare against | |
| Returns: | |
| Similarity score (higher means more similar) | |
| """ | |
| pass | |
| class ImageEvaluator(ABC): | |
| """Abstract base class for evaluating image similarity.""" | |
| def generate_initial_prompt(self, target_img: Image.Image) -> str: | |
| """Generate initial prompt from target image using VLM. | |
| Args: | |
| target_img: The target image to analyze | |
| Returns: | |
| Initial prompt describing the target image | |
| """ | |
| pass | |
| def analyze_differences(self, generated_img: Image.Image, target_img: Image.Image) -> Dict[str, Any]: | |
| """Analyze differences between generated and target images using VLM. | |
| Args: | |
| generated_img: The generated image to analyze | |
| target_img: The target image to compare against | |
| Returns: | |
| Dictionary containing analysis results (e.g. missing elements, style differences) | |
| """ | |
| pass | |
| class PromptRefiner(ABC): | |
| """Abstract base class for prompt refinement strategies.""" | |
| def refine_prompt(self, | |
| current_prompt: str, | |
| analysis: Dict[str, Any], | |
| similarity_score: float) -> str: | |
| """Refine the current prompt based on image analysis. | |
| Args: | |
| current_prompt: The current prompt PMT_i | |
| analysis: Analysis results from ImageEvaluator | |
| similarity_score: Current similarity score | |
| Returns: | |
| Refined prompt PMT_{i+1} | |
| """ | |
| pass | |
| class PromptOptimizer: | |
| """Main class that orchestrates the prompt optimization process.""" | |
| def __init__(self, | |
| image_generator: ImageGenerator, | |
| evaluator: ImageEvaluator, | |
| refiner: PromptRefiner, | |
| similarity_metric: ImageSimilarityMetric, | |
| max_iterations: int = 10, | |
| similarity_threshold: float = 0.95): | |
| """Initialize the optimizer. | |
| Args: | |
| image_generator: Text-to-image generator to use | |
| evaluator: Image evaluator for generating initial prompt and analysis | |
| refiner: Prompt refinement strategy | |
| similarity_metric: Image similarity metric | |
| max_iterations: Maximum number of optimization iterations | |
| similarity_threshold: Target similarity threshold for early stopping | |
| """ | |
| # Configuration | |
| self.image_generator = image_generator | |
| self.evaluator = evaluator | |
| self.refiner = refiner | |
| self.similarity_metric = similarity_metric | |
| self.max_iterations = max_iterations | |
| self.similarity_threshold = similarity_threshold | |
| # Optimization state | |
| self.target_img: Optional[Image.Image] = None | |
| self.current_prompt: Optional[str] = None | |
| self.iteration: int = 0 | |
| # Progress tracking | |
| self.history: List[Dict[str, Any]] = [] | |
| def initialize(self, target_img: Image.Image) -> tuple[bool, str, Image.Image]: | |
| """Initialize the optimization process with a target image. | |
| Args: | |
| target_img: Target image to optimize towards | |
| Returns: | |
| Tuple of (is_completed, current_prompt, current_generated_image) | |
| """ | |
| self.target_img = target_img | |
| self.current_prompt = self.evaluator.generate_initial_prompt(target_img) | |
| self.iteration = 0 | |
| self.history = [] | |
| return self.step() | |
| def step(self) -> tuple[bool, str, Image.Image]: | |
| """Perform one optimization step. | |
| Returns: | |
| Tuple of (is_completed, current_prompt, current_generated_image) | |
| is_completed: True if optimization is complete (reached threshold or max iterations) | |
| current_prompt: The current prompt | |
| current_generated_image: The image generated from current prompt | |
| """ | |
| if self.target_img is None or self.current_prompt is None: | |
| raise RuntimeError("Must call initialize() before step()") | |
| if self.iteration >= self.max_iterations: | |
| return True, self.current_prompt, self.image_generator.generate(self.current_prompt) | |
| # Generate image with current prompt | |
| generated_img = self.image_generator.generate(self.current_prompt) | |
| # Evaluate similarity | |
| similarity = self.similarity_metric.compute(generated_img, self.target_img) | |
| # Analyze differences | |
| analysis = self.evaluator.analyze_differences(generated_img, self.target_img) | |
| # Track progress | |
| self.history.append({ | |
| 'iteration': self.iteration, | |
| 'prompt': self.current_prompt, | |
| 'similarity': similarity, | |
| 'analysis': analysis, | |
| 'image': generated_img | |
| }) | |
| # Check if we've reached target similarity | |
| is_completed = similarity >= self.similarity_threshold | |
| if not is_completed: | |
| # Refine prompt | |
| self.current_prompt = self.refiner.refine_prompt( | |
| self.current_prompt, analysis, similarity) | |
| self.iteration += 1 | |
| return is_completed, self.current_prompt, generated_img |