Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- app.py +4 -4
- image_evaluators.py +276 -0
- image_generators.py +48 -0
- prompt_refiners.py +52 -0
- similarity_metrics.py +25 -0
- weave_prompt.py +6 -6
app.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from PIL import Image
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
from weave_prompt import PromptOptimizer
|
| 7 |
-
from
|
| 8 |
-
from
|
| 9 |
|
| 10 |
# Load environment variables from .env file
|
| 11 |
load_dotenv()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from PIL import Image
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
+
from image_evaluators import LlamaEvaluator
|
| 5 |
+
from prompt_refiners import LlamaPromptRefiner
|
| 6 |
from weave_prompt import PromptOptimizer
|
| 7 |
+
from similarity_metrics import LPIPSImageSimilarityMetric
|
| 8 |
+
from image_generators import FalImageGenerator
|
| 9 |
|
| 10 |
# Load environment variables from .env file
|
| 11 |
load_dotenv()
|
image_evaluators.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
import weave
|
| 3 |
+
import base64
|
| 4 |
+
import json
|
| 5 |
+
import tempfile
|
| 6 |
+
import os
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from typing import Dict, Any, Optional
|
| 10 |
+
from weave_prompt import ImageEvaluator
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
|
| 13 |
+
# Load environment variables from .env file
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
# Weave autopatches OpenAI to log LLM calls to W&B
|
| 17 |
+
weave.init("meta-llama")
|
| 18 |
+
|
| 19 |
+
class LlamaEvaluator(ImageEvaluator):
|
| 20 |
+
"""Llama-based image evaluator using W&B Inference."""
|
| 21 |
+
|
| 22 |
+
def __init__(self, api_key: Optional[str] = None):
|
| 23 |
+
"""
|
| 24 |
+
Initialize the Llama evaluator with OpenAI client.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
api_key: Optional API key. If not provided, will look for OPENAI_API_KEY
|
| 28 |
+
or WANDB_API_KEY environment variables.
|
| 29 |
+
"""
|
| 30 |
+
# Get API key from parameter, environment variables, or raise error
|
| 31 |
+
if api_key is None:
|
| 32 |
+
api_key = os.getenv('WANDB_API_KEY')
|
| 33 |
+
if api_key is None:
|
| 34 |
+
raise ValueError(
|
| 35 |
+
"API key not provided. Please either:\n"
|
| 36 |
+
"1. Pass api_key parameter to LlamaEvaluator()\n"
|
| 37 |
+
"2. Set OPENAI_API_KEY environment variable\n"
|
| 38 |
+
"3. Set WANDB_API_KEY environment variable\n"
|
| 39 |
+
"Get your API key from https://wandb.ai/authorize"
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
self.client = openai.OpenAI(
|
| 43 |
+
# The custom base URL points to W&B Inference
|
| 44 |
+
base_url='https://api.inference.wandb.ai/v1',
|
| 45 |
+
|
| 46 |
+
# Get your API key from https://wandb.ai/authorize
|
| 47 |
+
api_key=api_key,
|
| 48 |
+
)
|
| 49 |
+
self.model = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
|
| 50 |
+
|
| 51 |
+
def _encode_image(self, image: Image.Image) -> str:
|
| 52 |
+
"""Encode PIL Image to base64 string."""
|
| 53 |
+
try:
|
| 54 |
+
# Save image to temporary file and encode
|
| 55 |
+
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmp_file:
|
| 56 |
+
image.save(tmp_file.name, format='JPEG')
|
| 57 |
+
with open(tmp_file.name, "rb") as image_file:
|
| 58 |
+
encoded = base64.b64encode(image_file.read()).decode('utf-8')
|
| 59 |
+
# Clean up temp file
|
| 60 |
+
Path(tmp_file.name).unlink()
|
| 61 |
+
return encoded
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"Error encoding image: {e}")
|
| 64 |
+
return None
|
| 65 |
+
|
| 66 |
+
def _call_vision_model(self, prompt: str, images: list) -> str:
|
| 67 |
+
"""Call the vision model with prompt and images."""
|
| 68 |
+
try:
|
| 69 |
+
# Prepare content with text and images
|
| 70 |
+
content = [{"type": "text", "text": prompt}]
|
| 71 |
+
|
| 72 |
+
for i, img in enumerate(images):
|
| 73 |
+
base64_image = self._encode_image(img)
|
| 74 |
+
if base64_image:
|
| 75 |
+
if i > 0: # Add label for multiple images
|
| 76 |
+
content.append({
|
| 77 |
+
"type": "text",
|
| 78 |
+
"text": f"Image {i+1}:"
|
| 79 |
+
})
|
| 80 |
+
content.append({
|
| 81 |
+
"type": "image_url",
|
| 82 |
+
"image_url": {
|
| 83 |
+
"url": f"data:image/jpeg;base64,{base64_image}"
|
| 84 |
+
}
|
| 85 |
+
})
|
| 86 |
+
|
| 87 |
+
response = self.client.chat.completions.create(
|
| 88 |
+
model=self.model,
|
| 89 |
+
messages=[
|
| 90 |
+
{
|
| 91 |
+
"role": "system",
|
| 92 |
+
"content": "You are an expert image analyst. Provide detailed, accurate analysis."
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"role": "user",
|
| 96 |
+
"content": content
|
| 97 |
+
}
|
| 98 |
+
],
|
| 99 |
+
max_tokens=1000
|
| 100 |
+
)
|
| 101 |
+
return response.choices[0].message.content
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print(f"Error calling vision model: {e}")
|
| 104 |
+
return None
|
| 105 |
+
|
| 106 |
+
def generate_initial_prompt(self, generated_img: Image.Image) -> str:
|
| 107 |
+
"""Generate an initial prompt by describing the generated_img image."""
|
| 108 |
+
prompt = """
|
| 109 |
+
Analyze this image and generate a detailed text prompt that could be used to recreate it.
|
| 110 |
+
Focus on:
|
| 111 |
+
- Main subjects and objects
|
| 112 |
+
- Visual style and artistic technique
|
| 113 |
+
- Colors, lighting, and mood
|
| 114 |
+
- Composition and layout
|
| 115 |
+
- Important details and textures
|
| 116 |
+
|
| 117 |
+
Provide a concise but comprehensive prompt suitable for image generation.
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
description = self._call_vision_model(prompt, [generated_img])
|
| 121 |
+
|
| 122 |
+
if description:
|
| 123 |
+
return description.strip()
|
| 124 |
+
else:
|
| 125 |
+
# Fallback prompt
|
| 126 |
+
return "A beautiful image with vibrant colors and detailed composition"
|
| 127 |
+
@weave.op()
|
| 128 |
+
def analyze_differences(self, generated_img: Image.Image, target_img: Image.Image) -> Dict[str, Any]:
|
| 129 |
+
"""Analyze differences between generated and target images."""
|
| 130 |
+
analysis_prompt = """
|
| 131 |
+
Compare these two images and analyze their differences. The first image is generated, the second is the target.
|
| 132 |
+
|
| 133 |
+
Please provide a detailed analysis in JSON format with the following structure:
|
| 134 |
+
{
|
| 135 |
+
"missing_elements": ["list of elements present in target but missing in generated"],
|
| 136 |
+
"style_differences": ["list of style differences between the images"],
|
| 137 |
+
"color_differences": ["differences in color, lighting, or tone"],
|
| 138 |
+
"composition_differences": ["differences in layout, positioning, or framing"],
|
| 139 |
+
"quality_differences": ["differences in detail, sharpness, or overall quality"],
|
| 140 |
+
"similarity_score": "percentage of how similar the images are (0-100)",
|
| 141 |
+
"overall_assessment": "brief summary of the main differences"
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
Focus on identifying what elements, styles, or qualities are present in the target image but missing or different in the generated image.
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
response_text = self._call_vision_model(analysis_prompt, [generated_img, target_img])
|
| 148 |
+
|
| 149 |
+
if not response_text:
|
| 150 |
+
return {
|
| 151 |
+
"missing_elements": ["texture", "details"],
|
| 152 |
+
"style_differences": ["color intensity", "composition"],
|
| 153 |
+
"error": "Failed to analyze images"
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
try:
|
| 157 |
+
# Extract JSON from the response if it's wrapped in markdown
|
| 158 |
+
if "```json" in response_text:
|
| 159 |
+
json_start = response_text.find("```json") + 7
|
| 160 |
+
json_end = response_text.find("```", json_start)
|
| 161 |
+
json_text = response_text[json_start:json_end].strip()
|
| 162 |
+
elif "{" in response_text and "}" in response_text:
|
| 163 |
+
# Find the JSON object in the response
|
| 164 |
+
json_start = response_text.find("{")
|
| 165 |
+
json_end = response_text.rfind("}") + 1
|
| 166 |
+
json_text = response_text[json_start:json_end]
|
| 167 |
+
else:
|
| 168 |
+
json_text = response_text
|
| 169 |
+
|
| 170 |
+
analysis_result = json.loads(json_text)
|
| 171 |
+
|
| 172 |
+
# Ensure required keys exist with fallback values
|
| 173 |
+
if "missing_elements" not in analysis_result:
|
| 174 |
+
analysis_result["missing_elements"] = ["texture", "details"]
|
| 175 |
+
if "style_differences" not in analysis_result:
|
| 176 |
+
analysis_result["style_differences"] = ["color intensity", "composition"]
|
| 177 |
+
|
| 178 |
+
return analysis_result
|
| 179 |
+
|
| 180 |
+
except json.JSONDecodeError:
|
| 181 |
+
# If JSON parsing fails, return a structured response with fallback values
|
| 182 |
+
return {
|
| 183 |
+
"missing_elements": ["texture", "details"],
|
| 184 |
+
"style_differences": ["color intensity", "composition"],
|
| 185 |
+
"raw_analysis": response_text,
|
| 186 |
+
"note": "JSON parsing failed, using fallback analysis"
|
| 187 |
+
}
|
| 188 |
+
@weave.op()
|
| 189 |
+
def describe_image(self, image: Image.Image, custom_prompt: str = None) -> str:
|
| 190 |
+
"""Generate a detailed description of an image."""
|
| 191 |
+
if not custom_prompt:
|
| 192 |
+
custom_prompt = "Please describe this image in detail, including objects, people, colors, setting, and any notable features."
|
| 193 |
+
|
| 194 |
+
description = self._call_vision_model(custom_prompt, [image])
|
| 195 |
+
return description if description else "Failed to generate description"
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
# Utility functions for backward compatibility
|
| 199 |
+
def encode_image_from_path(image_path: str) -> str:
|
| 200 |
+
"""Encode image from file path to base64 string."""
|
| 201 |
+
try:
|
| 202 |
+
with open(image_path, "rb") as image_file:
|
| 203 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 204 |
+
except FileNotFoundError:
|
| 205 |
+
print(f"Error: Image file not found at {image_path}")
|
| 206 |
+
return None
|
| 207 |
+
except Exception as e:
|
| 208 |
+
print(f"Error encoding image: {e}")
|
| 209 |
+
return None
|
| 210 |
+
|
| 211 |
+
def describe_image_from_path(image_path: str, custom_prompt: str = None) -> str:
|
| 212 |
+
"""Generate description for an image from file path."""
|
| 213 |
+
if not Path(image_path).exists():
|
| 214 |
+
print(f"Error: Image file does not exist at {image_path}")
|
| 215 |
+
return None
|
| 216 |
+
|
| 217 |
+
# Load image and use evaluator
|
| 218 |
+
image = Image.open(image_path)
|
| 219 |
+
evaluator = LlamaEvaluator()
|
| 220 |
+
return evaluator.describe_image(image, custom_prompt)
|
| 221 |
+
|
| 222 |
+
def analyze_differences_from_paths(generated_img_path: str, target_img_path: str) -> Dict[str, Any]:
|
| 223 |
+
"""Analyze differences between two images from file paths."""
|
| 224 |
+
try:
|
| 225 |
+
generated_img = Image.open(generated_img_path)
|
| 226 |
+
target_img = Image.open(target_img_path)
|
| 227 |
+
|
| 228 |
+
evaluator = LlamaEvaluator()
|
| 229 |
+
return evaluator.analyze_differences(generated_img, target_img)
|
| 230 |
+
except Exception as e:
|
| 231 |
+
return {
|
| 232 |
+
"missing_elements": ["texture", "details"],
|
| 233 |
+
"style_differences": ["color intensity", "composition"],
|
| 234 |
+
"error": str(e)
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
# Example usage
|
| 239 |
+
if __name__ == "__main__":
|
| 240 |
+
# Example 1: Using the class directly
|
| 241 |
+
evaluator = LlamaEvaluator()
|
| 242 |
+
|
| 243 |
+
# Load images
|
| 244 |
+
try:
|
| 245 |
+
image_path = "/Users/chuchwu/Downloads/happy-190806.jpg"
|
| 246 |
+
target_image = Image.open(image_path)
|
| 247 |
+
|
| 248 |
+
# Generate initial prompt
|
| 249 |
+
print("Generating initial prompt...")
|
| 250 |
+
initial_prompt = evaluator.generate_initial_prompt(target_image)
|
| 251 |
+
print(f"Initial Prompt: {initial_prompt}")
|
| 252 |
+
print("\n" + "="*50 + "\n")
|
| 253 |
+
|
| 254 |
+
# Describe the image
|
| 255 |
+
print("Describing image...")
|
| 256 |
+
description = evaluator.describe_image(target_image)
|
| 257 |
+
print(f"Description: {description}")
|
| 258 |
+
print("\n" + "="*50 + "\n")
|
| 259 |
+
|
| 260 |
+
# Example 2: Analyze differences (using same image for demo)
|
| 261 |
+
print("Analyzing differences...")
|
| 262 |
+
differences = evaluator.analyze_differences(target_image, target_image)
|
| 263 |
+
print("Difference Analysis:")
|
| 264 |
+
print(f"Missing Elements: {differences.get('missing_elements', [])}")
|
| 265 |
+
print(f"Style Differences: {differences.get('style_differences', [])}")
|
| 266 |
+
|
| 267 |
+
if 'similarity_score' in differences:
|
| 268 |
+
print(f"Similarity Score: {differences['similarity_score']}%")
|
| 269 |
+
|
| 270 |
+
if 'overall_assessment' in differences:
|
| 271 |
+
print(f"Overall Assessment: {differences['overall_assessment']}")
|
| 272 |
+
|
| 273 |
+
except FileNotFoundError:
|
| 274 |
+
print("Image file not found. Please update the image_path variable.")
|
| 275 |
+
except Exception as e:
|
| 276 |
+
print(f"Error: {e}")
|
image_generators.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import fal_client
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from typing import Dict, Any
|
| 4 |
+
import requests
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
|
| 7 |
+
from weave_prompt import ImageGenerator
|
| 8 |
+
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
class FalImageGenerator(ImageGenerator):
|
| 13 |
+
"""Handles image generation using fal_client."""
|
| 14 |
+
|
| 15 |
+
def __init__(self, model_name: str = "fal-ai/flux-pro"):
|
| 16 |
+
self.model_name = model_name
|
| 17 |
+
|
| 18 |
+
def _on_queue_update(self, update):
|
| 19 |
+
"""Handle queue updates during image generation."""
|
| 20 |
+
if isinstance(update, fal_client.InProgress):
|
| 21 |
+
for log in update.logs:
|
| 22 |
+
print(log["message"])
|
| 23 |
+
|
| 24 |
+
def generate(self, prompt: str, **kwargs) -> Image.Image:
|
| 25 |
+
"""Generate an image from a text prompt using fal_client."""
|
| 26 |
+
result = fal_client.subscribe(
|
| 27 |
+
self.model_name,
|
| 28 |
+
arguments={
|
| 29 |
+
"prompt": prompt,
|
| 30 |
+
**kwargs
|
| 31 |
+
},
|
| 32 |
+
with_logs=True,
|
| 33 |
+
on_queue_update=self._on_queue_update,
|
| 34 |
+
)
|
| 35 |
+
print(result)
|
| 36 |
+
|
| 37 |
+
return self._extract_image_from_result(result)
|
| 38 |
+
|
| 39 |
+
def _extract_image_from_result(self, result: Dict[str, Any]) -> Image.Image:
|
| 40 |
+
"""Extract and download image from fal_client result."""
|
| 41 |
+
if result and 'images' in result and len(result['images']) > 0:
|
| 42 |
+
image_url = result['images'][0]['url']
|
| 43 |
+
response = requests.get(image_url)
|
| 44 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
| 45 |
+
image = Image.open(BytesIO(response.content))
|
| 46 |
+
return image
|
| 47 |
+
else:
|
| 48 |
+
raise ValueError("No image found in the result")
|
prompt_refiners.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict
|
| 2 |
+
import openai
|
| 3 |
+
import weave
|
| 4 |
+
import os
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
|
| 7 |
+
from weave_prompt import PromptRefiner
|
| 8 |
+
|
| 9 |
+
# Load environment variables from .env file
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
# Weave autopatches OpenAI to log LLM calls to W&B
|
| 13 |
+
weave.init(project_name="meta-llama")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class LlamaPromptRefiner(PromptRefiner):
|
| 17 |
+
@weave.op()
|
| 18 |
+
def refine_prompt(self, current_prompt: str, analysis: Dict[str, Any], similarity_score):
|
| 19 |
+
client = openai.OpenAI(
|
| 20 |
+
# The custom base URL points to W&B Inference
|
| 21 |
+
base_url='https://api.inference.wandb.ai/v1',
|
| 22 |
+
|
| 23 |
+
# Get your API key from https://wandb.ai/authorize
|
| 24 |
+
# Consider setting it in the environment as OPENAI_API_KEY instead for safety
|
| 25 |
+
api_key=os.getenv("WANDB_API_KEY"),
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
response = client.chat.completions.create(
|
| 29 |
+
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
| 30 |
+
messages=[
|
| 31 |
+
{
|
| 32 |
+
"role": "system",
|
| 33 |
+
"content": (
|
| 34 |
+
"You are an expert at prompt engineering for text-to-image models. "
|
| 35 |
+
"Given a current prompt and an analysis of the differences between a generated image and a target image, "
|
| 36 |
+
"your job is to suggest a new prompt that will make the generated image more similar to the target. "
|
| 37 |
+
"Limit the new prompt to 100 words at most. "
|
| 38 |
+
"The user message will contain two sections: one for the current prompt and one for the analysis, each delimited by 'START OF CURRENT PROMPT'/'END OF CURRENT PROMPT' and 'START OF ANALYSIS'/'END OF ANALYSIS'. "
|
| 39 |
+
"Only return the improved prompt."
|
| 40 |
+
)
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"role": "user",
|
| 44 |
+
"content": (
|
| 45 |
+
f"<START OF CURRENT PROMPT>\n{current_prompt}\n<END OF CURRENT PROMPT>\n"
|
| 46 |
+
f"<START OF ANALYSIS>\n{str(analysis)}\n<END OF ANALYSIS>\n"
|
| 47 |
+
"Suggest a new, improved prompt. Only return the prompt. Do not exceed 100 words."
|
| 48 |
+
)
|
| 49 |
+
}
|
| 50 |
+
],
|
| 51 |
+
)
|
| 52 |
+
return response.choices[0].message.content
|
similarity_metrics.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from weave_prompt import ImageSimilarityMetric
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import lpips
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
class LPIPSImageSimilarityMetric(ImageSimilarityMetric):
|
| 9 |
+
"""Image similarity metric using LPIPS perceptual similarity."""
|
| 10 |
+
def __init__(self, net: str = 'alex', device: str = 'cpu'):
|
| 11 |
+
self.lpips_model = lpips.LPIPS(net=net).to(device)
|
| 12 |
+
self.device = device
|
| 13 |
+
|
| 14 |
+
def compute(self, generated_img: Image.Image, target_img: Image.Image) -> float:
|
| 15 |
+
def img_to_tensor(img):
|
| 16 |
+
img = img.convert('RGB') # Ensure image has 3 channels for handling PNG
|
| 17 |
+
arr = np.array(img.resize((256, 256))).astype(np.float32) / 255.0
|
| 18 |
+
arr = arr.transpose(2, 0, 1) # HWC to CHW
|
| 19 |
+
tensor = torch.tensor(arr).unsqueeze(0)
|
| 20 |
+
return tensor * 2 - 1 # LPIPS expects [-1, 1]
|
| 21 |
+
gen_tensor = img_to_tensor(generated_img).to(self.device)
|
| 22 |
+
tgt_tensor = img_to_tensor(target_img).to(self.device)
|
| 23 |
+
distance = self.lpips_model(gen_tensor, tgt_tensor).item()
|
| 24 |
+
similarity = max(0.0, 1.0 - distance)
|
| 25 |
+
return similarity
|
weave_prompt.py
CHANGED
|
@@ -3,7 +3,7 @@ from abc import ABC, abstractmethod
|
|
| 3 |
from typing import Any, Dict, List, Optional, Union
|
| 4 |
import PIL.Image as Image
|
| 5 |
|
| 6 |
-
class
|
| 7 |
"""Abstract base class for text-to-image models."""
|
| 8 |
|
| 9 |
@abstractmethod
|
|
@@ -85,7 +85,7 @@ class PromptOptimizer:
|
|
| 85 |
"""Main class that orchestrates the prompt optimization process."""
|
| 86 |
|
| 87 |
def __init__(self,
|
| 88 |
-
|
| 89 |
evaluator: ImageEvaluator,
|
| 90 |
refiner: PromptRefiner,
|
| 91 |
similarity_metric: ImageSimilarityMetric,
|
|
@@ -94,7 +94,7 @@ class PromptOptimizer:
|
|
| 94 |
"""Initialize the optimizer.
|
| 95 |
|
| 96 |
Args:
|
| 97 |
-
|
| 98 |
evaluator: Image evaluator for generating initial prompt and analysis
|
| 99 |
refiner: Prompt refinement strategy
|
| 100 |
similarity_metric: Image similarity metric
|
|
@@ -102,7 +102,7 @@ class PromptOptimizer:
|
|
| 102 |
similarity_threshold: Target similarity threshold for early stopping
|
| 103 |
"""
|
| 104 |
# Configuration
|
| 105 |
-
self.
|
| 106 |
self.evaluator = evaluator
|
| 107 |
self.refiner = refiner
|
| 108 |
self.similarity_metric = similarity_metric
|
|
@@ -141,9 +141,9 @@ class PromptOptimizer:
|
|
| 141 |
if self.target_img is None or self.current_prompt is None:
|
| 142 |
raise RuntimeError("Must call initialize() before step()")
|
| 143 |
if self.iteration >= self.max_iterations:
|
| 144 |
-
return True, self.current_prompt, self.
|
| 145 |
# Generate image with current prompt
|
| 146 |
-
generated_img = self.
|
| 147 |
# Evaluate similarity
|
| 148 |
similarity = self.similarity_metric.compute(generated_img, self.target_img)
|
| 149 |
# Analyze differences
|
|
|
|
| 3 |
from typing import Any, Dict, List, Optional, Union
|
| 4 |
import PIL.Image as Image
|
| 5 |
|
| 6 |
+
class ImageGenerator(ABC):
|
| 7 |
"""Abstract base class for text-to-image models."""
|
| 8 |
|
| 9 |
@abstractmethod
|
|
|
|
| 85 |
"""Main class that orchestrates the prompt optimization process."""
|
| 86 |
|
| 87 |
def __init__(self,
|
| 88 |
+
image_generator: ImageGenerator,
|
| 89 |
evaluator: ImageEvaluator,
|
| 90 |
refiner: PromptRefiner,
|
| 91 |
similarity_metric: ImageSimilarityMetric,
|
|
|
|
| 94 |
"""Initialize the optimizer.
|
| 95 |
|
| 96 |
Args:
|
| 97 |
+
image_generator: Text-to-image generator to use
|
| 98 |
evaluator: Image evaluator for generating initial prompt and analysis
|
| 99 |
refiner: Prompt refinement strategy
|
| 100 |
similarity_metric: Image similarity metric
|
|
|
|
| 102 |
similarity_threshold: Target similarity threshold for early stopping
|
| 103 |
"""
|
| 104 |
# Configuration
|
| 105 |
+
self.image_generator = image_generator
|
| 106 |
self.evaluator = evaluator
|
| 107 |
self.refiner = refiner
|
| 108 |
self.similarity_metric = similarity_metric
|
|
|
|
| 141 |
if self.target_img is None or self.current_prompt is None:
|
| 142 |
raise RuntimeError("Must call initialize() before step()")
|
| 143 |
if self.iteration >= self.max_iterations:
|
| 144 |
+
return True, self.current_prompt, self.image_generator.generate(self.current_prompt)
|
| 145 |
# Generate image with current prompt
|
| 146 |
+
generated_img = self.image_generator.generate(self.current_prompt)
|
| 147 |
# Evaluate similarity
|
| 148 |
similarity = self.similarity_metric.compute(generated_img, self.target_img)
|
| 149 |
# Analyze differences
|