import fal_client from weave_prompt import TextToImageModel, ImageEvaluator, PromptRefiner from PIL import Image import numpy as np from typing import Dict, Any import os from fal_image_generator import FalImageGenerator class MockTextToImageModel(TextToImageModel): """Mock text-to-image model for demonstration.""" def __init__(self): self.image_generator = FalImageGenerator() def generate(self, prompt: str, **kwargs) -> Image.Image: """Generate an image using the fal image generator.""" return self.image_generator.generate_image(prompt, **kwargs) class MockImageEvaluator(ImageEvaluator): """Mock image evaluator for demonstration.""" def generate_initial_prompt(self, target_img: Image.Image) -> str: """Generate a mock initial prompt.""" return "A beautiful image with vibrant colors" def analyze_differences(self, generated_img: Image.Image, target_img: Image.Image) -> Dict[str, Any]: """Mock difference analysis.""" return { "missing_elements": ["texture", "details"], "style_differences": ["color intensity", "composition"] } class MockSimilarityMetric: """Mock similarity metric that gradually increases.""" def compute(self, generated_img: Image.Image, target_img: Image.Image) -> float: """Mock similarity computation that gradually increases.""" # Randomly increase similarity over time return np.random.uniform(0.5, 0.95) class MockPromptRefiner(PromptRefiner): """Mock prompt refiner for demonstration.""" def refine_prompt(self, current_prompt: str, analysis: Dict[str, Any], similarity_score: float) -> str: """Mock prompt refinement by adding random modifiers.""" modifiers = [ "with more detail", "in vibrant colors", "with better composition", "high quality", "masterfully crafted" ] return f"{current_prompt}, {np.random.choice(modifiers)}"