Spaces:
Running
Running
| """ | |
| ein notation: | |
| b - batch | |
| n - sequence | |
| nt - text sequence | |
| nw - raw wave length | |
| d - dimension | |
| """ | |
| from __future__ import annotations | |
| from typing import Literal | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| from x_transformers import RMSNorm | |
| from x_transformers.x_transformers import RotaryEmbedding | |
| from model.modules import ( | |
| TimestepEmbedding, | |
| ConvNeXtV2Block, | |
| ConvPositionEmbedding, | |
| Attention, | |
| AttnProcessor, | |
| FeedForward, | |
| precompute_freqs_cis, get_pos_embed_indices, | |
| ) | |
| # Text embedding | |
| class TextEmbedding(nn.Module): | |
| def __init__(self, text_num_embeds, text_dim, conv_layers = 0, conv_mult = 2): | |
| super().__init__() | |
| self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token | |
| if conv_layers > 0: | |
| self.extra_modeling = True | |
| self.precompute_max_pos = 4096 # ~44s of 24khz audio | |
| self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) | |
| self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]) | |
| else: | |
| self.extra_modeling = False | |
| def forward(self, text: int['b nt'], seq_len, drop_text = False): | |
| batch, text_len = text.shape[0], text.shape[1] | |
| text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() | |
| text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens | |
| text = F.pad(text, (0, seq_len - text_len), value = 0) | |
| if drop_text: # cfg for text | |
| text = torch.zeros_like(text) | |
| text = self.text_embed(text) # b n -> b n d | |
| # possible extra modeling | |
| if self.extra_modeling: | |
| # sinus pos emb | |
| batch_start = torch.zeros((batch,), dtype=torch.long) | |
| pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) | |
| text_pos_embed = self.freqs_cis[pos_idx] | |
| text = text + text_pos_embed | |
| # convnextv2 blocks | |
| text = self.text_blocks(text) | |
| return text | |
| # noised input audio and context mixing embedding | |
| class InputEmbedding(nn.Module): | |
| def __init__(self, mel_dim, text_dim, out_dim): | |
| super().__init__() | |
| self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim) | |
| self.conv_pos_embed = ConvPositionEmbedding(dim = out_dim) | |
| def forward(self, x: float['b n d'], cond: float['b n d'], text_embed: float['b n d'], drop_audio_cond = False): | |
| if drop_audio_cond: # cfg for cond audio | |
| cond = torch.zeros_like(cond) | |
| x = self.proj(torch.cat((x, cond, text_embed), dim = -1)) | |
| x = self.conv_pos_embed(x) + x | |
| return x | |
| # Flat UNet Transformer backbone | |
| class UNetT(nn.Module): | |
| def __init__(self, *, | |
| dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4, | |
| mel_dim = 100, text_num_embeds = 256, text_dim = None, conv_layers = 0, | |
| skip_connect_type: Literal['add', 'concat', 'none'] = 'concat', | |
| ): | |
| super().__init__() | |
| assert depth % 2 == 0, "UNet-Transformer's depth should be even." | |
| self.time_embed = TimestepEmbedding(dim) | |
| if text_dim is None: | |
| text_dim = mel_dim | |
| self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers = conv_layers) | |
| self.input_embed = InputEmbedding(mel_dim, text_dim, dim) | |
| self.rotary_embed = RotaryEmbedding(dim_head) | |
| # transformer layers & skip connections | |
| self.dim = dim | |
| self.skip_connect_type = skip_connect_type | |
| needs_skip_proj = skip_connect_type == 'concat' | |
| self.depth = depth | |
| self.layers = nn.ModuleList([]) | |
| for idx in range(depth): | |
| is_later_half = idx >= (depth // 2) | |
| attn_norm = RMSNorm(dim) | |
| attn = Attention( | |
| processor = AttnProcessor(), | |
| dim = dim, | |
| heads = heads, | |
| dim_head = dim_head, | |
| dropout = dropout, | |
| ) | |
| ff_norm = RMSNorm(dim) | |
| ff = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh") | |
| skip_proj = nn.Linear(dim * 2, dim, bias = False) if needs_skip_proj and is_later_half else None | |
| self.layers.append(nn.ModuleList([ | |
| skip_proj, | |
| attn_norm, | |
| attn, | |
| ff_norm, | |
| ff, | |
| ])) | |
| self.norm_out = RMSNorm(dim) | |
| self.proj_out = nn.Linear(dim, mel_dim) | |
| def forward( | |
| self, | |
| x: float['b n d'], # nosied input audio | |
| cond: float['b n d'], # masked cond audio | |
| text: int['b nt'], # text | |
| time: float['b'] | float[''], # time step | |
| drop_audio_cond, # cfg for cond audio | |
| drop_text, # cfg for text | |
| mask: bool['b n'] | None = None, | |
| ): | |
| batch, seq_len = x.shape[0], x.shape[1] | |
| if time.ndim == 0: | |
| time = time.repeat(batch) | |
| # t: conditioning time, c: context (text + masked cond audio), x: noised input audio | |
| t = self.time_embed(time) | |
| text_embed = self.text_embed(text, seq_len, drop_text = drop_text) | |
| x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond) | |
| # postfix time t to input x, [b n d] -> [b n+1 d] | |
| x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x | |
| if mask is not None: | |
| mask = F.pad(mask, (1, 0), value=1) | |
| rope = self.rotary_embed.forward_from_seq_len(seq_len + 1) | |
| # flat unet transformer | |
| skip_connect_type = self.skip_connect_type | |
| skips = [] | |
| for idx, (maybe_skip_proj, attn_norm, attn, ff_norm, ff) in enumerate(self.layers): | |
| layer = idx + 1 | |
| # skip connection logic | |
| is_first_half = layer <= (self.depth // 2) | |
| is_later_half = not is_first_half | |
| if is_first_half: | |
| skips.append(x) | |
| if is_later_half: | |
| skip = skips.pop() | |
| if skip_connect_type == 'concat': | |
| x = torch.cat((x, skip), dim = -1) | |
| x = maybe_skip_proj(x) | |
| elif skip_connect_type == 'add': | |
| x = x + skip | |
| # attention and feedforward blocks | |
| x = attn(attn_norm(x), rope = rope, mask = mask) + x | |
| x = ff(ff_norm(x)) + x | |
| assert len(skips) == 0 | |
| x = self.norm_out(x)[:, 1:, :] # unpack t from x | |
| return self.proj_out(x) | |