Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from fastapi import FastAPI
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from langdetect import detect
|
| 5 |
+
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, GenerationConfig
|
| 7 |
+
from langchain.vectorstores import Qdrant
|
| 8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 9 |
+
from langchain.chains import RetrievalQA
|
| 10 |
+
from langchain.llms import HuggingFacePipeline
|
| 11 |
+
from qdrant_client import QdrantClient
|
| 12 |
+
|
| 13 |
+
# Get environment variables
|
| 14 |
+
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
|
| 15 |
+
QDRANT_URL = os.getenv("QDRANT_URL")
|
| 16 |
+
COLLECTION_NAME = "arabic_rag_collection"
|
| 17 |
+
|
| 18 |
+
# Load model and tokenizer
|
| 19 |
+
model_name = "FreedomIntelligence/Apollo-7B"
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 22 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 23 |
+
|
| 24 |
+
# Generation settings
|
| 25 |
+
generation_config = GenerationConfig(
|
| 26 |
+
max_new_tokens=150,
|
| 27 |
+
temperature=0.2,
|
| 28 |
+
top_k=20,
|
| 29 |
+
do_sample=True,
|
| 30 |
+
top_p=0.7,
|
| 31 |
+
repetition_penalty=1.3,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Text generation pipeline
|
| 35 |
+
llm_pipeline = pipeline(
|
| 36 |
+
model=model,
|
| 37 |
+
tokenizer=tokenizer,
|
| 38 |
+
task="text-generation",
|
| 39 |
+
generation_config=generation_config,
|
| 40 |
+
device=model.device.index if model.device.type == "cuda" else -1
|
| 41 |
+
)
|
| 42 |
+
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
| 43 |
+
|
| 44 |
+
# Connect to Qdrant + embedding
|
| 45 |
+
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
| 46 |
+
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
|
| 47 |
+
|
| 48 |
+
vector_store = Qdrant(
|
| 49 |
+
client=qdrant_client,
|
| 50 |
+
collection_name=COLLECTION_NAME,
|
| 51 |
+
embeddings=embedding
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
| 55 |
+
|
| 56 |
+
# Set up RAG QA chain
|
| 57 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 58 |
+
llm=llm,
|
| 59 |
+
retriever=retriever,
|
| 60 |
+
chain_type="stuff"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# FastAPI setup
|
| 64 |
+
app = FastAPI(title="Apollo RAG Medical Chatbot")
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class Query(BaseModel):
|
| 68 |
+
question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)
|
| 69 |
+
|
| 70 |
+
class TimeoutCallback(BaseCallbackHandler):
|
| 71 |
+
def __init__(self, timeout_seconds: int = 60):
|
| 72 |
+
self.timeout_seconds = timeout_seconds
|
| 73 |
+
self.start_time = None
|
| 74 |
+
|
| 75 |
+
async def on_llm_start(self, *args, **kwargs):
|
| 76 |
+
self.start_time = asyncio.get_event_loop().time()
|
| 77 |
+
|
| 78 |
+
async def on_llm_new_token(self, *args, **kwargs):
|
| 79 |
+
if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
|
| 80 |
+
raise TimeoutError("LLM processing timeout")
|
| 81 |
+
|
| 82 |
+
# Prompt template
|
| 83 |
+
def generate_prompt(question: str) -> str:
|
| 84 |
+
lang = detect(question)
|
| 85 |
+
if lang == "ar":
|
| 86 |
+
return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
|
| 87 |
+
وتأكد من ان:
|
| 88 |
+
- عدم تكرار أي نقطة أو عبارة أو كلمة
|
| 89 |
+
- وضوح وسلاسة كل نقطة
|
| 90 |
+
- تجنب الحشو والعبارات الزائدة
|
| 91 |
+
السؤال: {question}
|
| 92 |
+
الإجابة:"""
|
| 93 |
+
else:
|
| 94 |
+
return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas or restate the question. If the context lacks information, rely on prior medical knowledge.
|
| 95 |
+
Question: {question}
|
| 96 |
+
Answer:"""
|
| 97 |
+
|
| 98 |
+
# Input schema
|
| 99 |
+
# class ChatRequest(BaseModel):
|
| 100 |
+
# message: str
|
| 101 |
+
|
| 102 |
+
# # Output endpoint
|
| 103 |
+
# @app.post("/chat")
|
| 104 |
+
# def chat_rag(req: ChatRequest):
|
| 105 |
+
# prompt = generate_prompt(req.message)
|
| 106 |
+
# response = qa_chain.run(prompt)
|
| 107 |
+
# return {"response": response}
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# === ROUTES === #
|
| 111 |
+
@app.get("/")
|
| 112 |
+
async def root():
|
| 113 |
+
return {"message": "Medical QA API is running!"}
|
| 114 |
+
|
| 115 |
+
@app.post("/ask")
|
| 116 |
+
async def ask(query: Query):
|
| 117 |
+
try:
|
| 118 |
+
logger.debug(f"Received question: {query.question}")
|
| 119 |
+
prompt = generate_prompt(query.question)
|
| 120 |
+
timeout_callback = TimeoutCallback(timeout_seconds=60)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
loop = asyncio.get_event_loop()
|
| 124 |
+
|
| 125 |
+
answer = await asyncio.wait_for(
|
| 126 |
+
# qa_chain.run(prompt, callbacks=[timeout_callback]),
|
| 127 |
+
loop.run_in_executor(None, qa_chain.run, prompt),
|
| 128 |
+
timeout=360
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
if not answer:
|
| 132 |
+
raise ValueError("Empty answer returned from model")
|
| 133 |
+
|
| 134 |
+
if 'Answer:' in answer:
|
| 135 |
+
response_text = answer.split('Answer:')[-1].strip()
|
| 136 |
+
elif 'الإجابة:' in answer:
|
| 137 |
+
response_text = answer.split('الإجابة:')[-1].strip()
|
| 138 |
+
else:
|
| 139 |
+
response_text = answer.strip()
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
return {
|
| 143 |
+
"status": "success",
|
| 144 |
+
"response": response_text,
|
| 145 |
+
"language": detect(query.question)
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
except TimeoutError as te:
|
| 149 |
+
logger.error("Request timed out", exc_info=True)
|
| 150 |
+
raise HTTPException(
|
| 151 |
+
status_code=status.HTTP_504_GATEWAY_TIMEOUT,
|
| 152 |
+
detail={"status": "error", "message": "Request timed out", "error": str(te)}
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
except Exception as e:
|
| 156 |
+
logger.error(f"Unexpected error: {e}", exc_info=True)
|
| 157 |
+
raise HTTPException(
|
| 158 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 159 |
+
detail={"status": "error", "message": "Internal server error", "error": str(e)}
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# === ENTRYPOINT === #
|
| 163 |
+
if __name__ == "__main__":
|
| 164 |
+
def handle_exit(signum, frame):
|
| 165 |
+
print("Shutting down gracefully...")
|
| 166 |
+
exit(0)
|
| 167 |
+
|
| 168 |
+
signal.signal(signal.SIGINT, handle_exit)
|
| 169 |
+
import uvicorn
|
| 170 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 171 |
+
|