Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -133,7 +133,312 @@ def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False
|
|
| 133 |
return pixel_values, target_aspect_ratio
|
| 134 |
else:
|
| 135 |
return pixel_values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
model = AutoModel.from_pretrained(
|
| 138 |
"khang119966/Vintern-1B-v3_5-explainableAI",
|
| 139 |
torch_dtype=torch.bfloat16,
|
|
@@ -150,6 +455,9 @@ def generate_video(image, prompt, max_tokens):
|
|
| 150 |
response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \
|
| 151 |
attention_visualize=True,last_visualize_layers=7,raw_image_path=test_image,target_aspect_ratio=target_aspect_ratio)
|
| 152 |
print(response)
|
|
|
|
|
|
|
|
|
|
| 153 |
return "path_to_generated_video.mp4"
|
| 154 |
|
| 155 |
with gr.Blocks() as demo:
|
|
@@ -157,7 +465,7 @@ with gr.Blocks() as demo:
|
|
| 157 |
|
| 158 |
with gr.Row():
|
| 159 |
with gr.Column():
|
| 160 |
-
image = gr.Image(label="Upload your image")
|
| 161 |
prompt = gr.Textbox(label="Describe your prompt", value="List all the text." )
|
| 162 |
max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=512, value=50)
|
| 163 |
btn = gr.Button("Attenion Video")
|
|
|
|
| 133 |
return pixel_values, target_aspect_ratio
|
| 134 |
else:
|
| 135 |
return pixel_values
|
| 136 |
+
|
| 137 |
+
def visualize_attention_hiddenstate(attention_tensor, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)):
|
| 138 |
+
"""Vẽ heatmap của attention scores từ trung bình 8 layer cuối và trả về top 5 token có attention cao nhất."""
|
| 139 |
+
last_8_layers = attention_tensor[-8:] # Lấy 8 layer cuối
|
| 140 |
+
averaged_layer = np.mean(last_8_layers,axis=0) # Trung bình 8 layer cuối
|
| 141 |
+
|
| 142 |
+
if head is None:
|
| 143 |
+
averaged_attention = averaged_layer.mean(axis=1).squeeze() # Trung bình qua các head
|
| 144 |
+
else:
|
| 145 |
+
averaged_attention = averaged_layer[:, head, :, :].squeeze() # Chọn head cụ thể
|
| 146 |
+
|
| 147 |
+
heat_maps = []
|
| 148 |
+
top_5_tokens = []
|
| 149 |
+
|
| 150 |
+
for i in range(len(averaged_attention)): # Duyệt qua các beam
|
| 151 |
+
h_target_aspect_ratio = target_aspect_ratio[1] if target_aspect_ratio[1] != 0 else 1
|
| 152 |
+
w_target_aspect_ratio = target_aspect_ratio[0] if target_aspect_ratio[0] != 0 else 1
|
| 153 |
+
|
| 154 |
+
img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index]
|
| 155 |
+
|
| 156 |
+
# Lấy index của 5 token có attention cao nhất
|
| 157 |
+
top_5_indices = np.argsort(img_atten_score)[-5:][::-1] # Sắp xếp giảm dần
|
| 158 |
+
top_5_values = img_atten_score[top_5_indices]
|
| 159 |
+
# top_5_tokens.append(list(zip(top_5_indices + start_img_token_index, top_5_values)))
|
| 160 |
+
top_5_tokens.append(list(top_5_indices + start_img_token_index))
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# Reshape lại attention để vẽ heatmap
|
| 164 |
+
img_atten_score = img_atten_score.reshape(h_target_aspect_ratio, w_target_aspect_ratio, 16, 16)
|
| 165 |
+
img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio * 16, w_target_aspect_ratio * 16)
|
| 166 |
+
|
| 167 |
+
img_atten_score = np.power(img_atten_score, 0.9)
|
| 168 |
+
heat_maps.append(img_atten_score)
|
| 169 |
+
|
| 170 |
+
return heat_maps, top_5_tokens
|
| 171 |
+
|
| 172 |
+
def generate_next_token_table_image(model, tokenizer, response, index_focus):
|
| 173 |
+
next_token_table = []
|
| 174 |
+
for layer_index in range(len(response.hidden_states[index_focus])):
|
| 175 |
+
h_out = model.language_model.lm_head(
|
| 176 |
+
model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0])
|
| 177 |
+
)
|
| 178 |
+
h_out = torch.softmax(h_out, -1)
|
| 179 |
+
top_tokens = []
|
| 180 |
+
for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3
|
| 181 |
+
token_str = tokenizer.decode(token_index)
|
| 182 |
+
prob = float(h_out[0, int(token_index)])
|
| 183 |
+
top_tokens.append((token_str, prob))
|
| 184 |
+
next_token_table.append((layer_index, top_tokens))
|
| 185 |
+
next_token_table = next_token_table[::-1]
|
| 186 |
+
|
| 187 |
+
html_rows = ""
|
| 188 |
+
last_layer_index = len(next_token_table) - 1
|
| 189 |
+
|
| 190 |
+
for i, (layer_index, tokens) in enumerate(next_token_table):
|
| 191 |
+
row = f"<tr><td style='font-weight: bold'>Layer {layer_index}</td>"
|
| 192 |
|
| 193 |
+
# For the first column (Top 1)
|
| 194 |
+
token_str, prob = tokens[0]
|
| 195 |
+
|
| 196 |
+
# If this is the last layer in the table, make the text blue
|
| 197 |
+
if layer_index == last_layer_index:
|
| 198 |
+
row += f"<td><span style='color: red; font-weight: bold'>{token_str}</span> ({prob:.2%})</td>"
|
| 199 |
+
else:
|
| 200 |
+
row += f"<td><span style='color: blue; font-weight: bold'>{token_str}</span> ({prob:.2%})</td>"
|
| 201 |
+
|
| 202 |
+
# For the other columns, keep normal formatting
|
| 203 |
+
for token_str, prob in tokens[1:]:
|
| 204 |
+
row += f"<td>{token_str} ({prob:.2%})</td>"
|
| 205 |
+
|
| 206 |
+
row += "</tr>"
|
| 207 |
+
html_rows += row
|
| 208 |
+
|
| 209 |
+
html_code = f'''
|
| 210 |
+
<html>
|
| 211 |
+
<head>
|
| 212 |
+
<meta charset="utf-8">
|
| 213 |
+
<style>
|
| 214 |
+
table {{
|
| 215 |
+
font-family: 'Noto Sans';
|
| 216 |
+
font-size: 12px;
|
| 217 |
+
border-collapse: collapse;
|
| 218 |
+
table-layout: fixed;
|
| 219 |
+
width: 100%;
|
| 220 |
+
}}
|
| 221 |
+
th, td {{
|
| 222 |
+
border: 1px solid black;
|
| 223 |
+
padding: 8px;
|
| 224 |
+
width: 150px;
|
| 225 |
+
height: 30px;
|
| 226 |
+
overflow: hidden;
|
| 227 |
+
text-overflow: ellipsis;
|
| 228 |
+
white-space: nowrap;
|
| 229 |
+
text-align: center;
|
| 230 |
+
}}
|
| 231 |
+
th.layer {{
|
| 232 |
+
width: 100px;
|
| 233 |
+
}}
|
| 234 |
+
th.title {{
|
| 235 |
+
font-size: 14px;
|
| 236 |
+
padding: 10px;
|
| 237 |
+
height: auto;
|
| 238 |
+
white-space: normal;
|
| 239 |
+
overflow: visible;
|
| 240 |
+
}}
|
| 241 |
+
</style>
|
| 242 |
+
</head>
|
| 243 |
+
<body style="background-color: white;">
|
| 244 |
+
<table>
|
| 245 |
+
<tr>
|
| 246 |
+
<th colspan="4" class="title">
|
| 247 |
+
Top hidden tokens per layer for the Prediction
|
| 248 |
+
</th>
|
| 249 |
+
</tr>
|
| 250 |
+
<tr>
|
| 251 |
+
<th class="layer">Layer ⬆️</th>
|
| 252 |
+
<th>Top 1</th>
|
| 253 |
+
<th>Top 2</th>
|
| 254 |
+
<th>Top 3</th>
|
| 255 |
+
</tr>
|
| 256 |
+
{html_rows}
|
| 257 |
+
</table>
|
| 258 |
+
</body>
|
| 259 |
+
</html>
|
| 260 |
+
'''
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 264 |
+
hti = Html2Image(output_path=tmpdir)
|
| 265 |
+
hti.browser_flags = [
|
| 266 |
+
"--headless=new", # ← Dùng chế độ headless mới
|
| 267 |
+
"--disable-gpu", # ← Tắt GPU
|
| 268 |
+
"--disable-software-rasterizer", # ← Tránh dùng fallback GPU software
|
| 269 |
+
"--no-sandbox", # ← Tránh lỗi sandbox đa luồng
|
| 270 |
+
]
|
| 271 |
+
filename = str(uuid.uuid4())+".png"
|
| 272 |
+
# filename = 'next_token_table.png'
|
| 273 |
+
hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000))
|
| 274 |
+
img_path = os.path.join(tmpdir, filename)
|
| 275 |
+
img_cv2 = cv2.imread(img_path)[:,:,::-1]
|
| 276 |
+
os.remove(img_path)
|
| 277 |
+
return img_cv2
|
| 278 |
+
|
| 279 |
+
def adjust_overlay(overlay, text_img):
|
| 280 |
+
h_o, w_o = overlay.shape[:2]
|
| 281 |
+
h_t, w_t = text_img.shape[:2]
|
| 282 |
+
|
| 283 |
+
if h_o > w_o: # Overlay là ảnh đứng
|
| 284 |
+
# Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ
|
| 285 |
+
new_h = h_t
|
| 286 |
+
new_w = int(w_o * (new_h / h_o))
|
| 287 |
+
overlay_resized = cv2.resize(overlay, (new_w, new_h))
|
| 288 |
+
else: # Overlay là ảnh ngang
|
| 289 |
+
# Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng
|
| 290 |
+
overlay_resized = overlay.copy()
|
| 291 |
+
|
| 292 |
+
# Thêm padding trắng nếu overlay có h < h_t
|
| 293 |
+
if overlay_resized.shape[0] < h_t:
|
| 294 |
+
pad_h = h_t - overlay_resized.shape[0]
|
| 295 |
+
padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255
|
| 296 |
+
overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới
|
| 297 |
+
|
| 298 |
+
# Đảm bảo overlay có cùng chiều cao với text_img
|
| 299 |
+
if overlay_resized.shape[0] != h_t:
|
| 300 |
+
overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t))
|
| 301 |
+
|
| 302 |
+
return overlay_resized
|
| 303 |
+
|
| 304 |
+
def generate_text_image_with_html2image(old_text, input_token, new_token, image_width=400, min_height=1000, font_size=16):
|
| 305 |
+
full_text = old_text + f"<span style='color:blue; font-weight:bold'>[{input_token}]</span>"+ "→" + f"<span style='color:red; font-weight:bold'>[{new_token}]</span>"
|
| 306 |
+
|
| 307 |
+
# Thay \n bằng thẻ HTML <br> để xuống dòng
|
| 308 |
+
full_text = full_text.replace('\n', '<br>')
|
| 309 |
+
|
| 310 |
+
html_code = f'''
|
| 311 |
+
<html>
|
| 312 |
+
<head>
|
| 313 |
+
<meta charset="utf-8">
|
| 314 |
+
</head>
|
| 315 |
+
<body style="font-family: 'DejaVu Sans', sans-serif; font-size: {font_size}px; width: {image_width}px; min-height: {min_height}px; padding: 10px; background-color: white; line-height: 1.4;">
|
| 316 |
+
{full_text}
|
| 317 |
+
</body>
|
| 318 |
+
</html>
|
| 319 |
+
'''
|
| 320 |
+
save_path = str(uuid.uuid4())+".png"
|
| 321 |
+
hti = Html2Image(output_path='.')
|
| 322 |
+
hti.browser_flags = [
|
| 323 |
+
"--headless=new", # ← Dùng chế độ headless mới
|
| 324 |
+
"--disable-gpu", # ← Tắt GPU
|
| 325 |
+
"--disable-software-rasterizer", # ← Tránh dùng fallback GPU software
|
| 326 |
+
"--no-sandbox", # ← Tránh lỗi sandbox đa luồng
|
| 327 |
+
]
|
| 328 |
+
hti.screenshot(html_str=html_code, save_as=save_path, size=(image_width, min_height))
|
| 329 |
+
text_img = cv2.imread(save_path)
|
| 330 |
+
text_img = cv2.cvtColor(text_img, cv2.COLOR_BGR2RGB)
|
| 331 |
+
os.remove(save_path)
|
| 332 |
+
return text_img
|
| 333 |
+
|
| 334 |
+
def extract_next_token_table_data(model, tokenizer, response, index_focus):
|
| 335 |
+
next_token_table = []
|
| 336 |
+
for layer_index in range(len(response.hidden_states[index_focus])):
|
| 337 |
+
h_out = model.language_model.lm_head(
|
| 338 |
+
model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0])
|
| 339 |
+
)
|
| 340 |
+
h_out = torch.softmax(h_out, -1)
|
| 341 |
+
top_tokens = []
|
| 342 |
+
for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3
|
| 343 |
+
token_str = tokenizer.decode(token_index)
|
| 344 |
+
prob = float(h_out[0, int(token_index)])
|
| 345 |
+
top_tokens.append((token_str, prob))
|
| 346 |
+
next_token_table.append((layer_index, top_tokens))
|
| 347 |
+
next_token_table = next_token_table[::-1]
|
| 348 |
+
return next_token_table
|
| 349 |
+
|
| 350 |
+
def render_next_token_table_image(table_data, predict_token):
|
| 351 |
+
import tempfile, uuid, os
|
| 352 |
+
from html2image import Html2Image
|
| 353 |
+
import cv2
|
| 354 |
+
|
| 355 |
+
html_rows = ""
|
| 356 |
+
last_layer_index = len(table_data)
|
| 357 |
+
for layer_index, tokens in table_data:
|
| 358 |
+
row = f"<tr><td style='font-weight: bold'>Layer {layer_index+1}</td>"
|
| 359 |
+
|
| 360 |
+
token_str, prob = tokens[0]
|
| 361 |
+
if token_str == predict_token:
|
| 362 |
+
style = "color: red; font-weight: bold"
|
| 363 |
+
else:
|
| 364 |
+
style = "color: blue; font-weight: bold"
|
| 365 |
+
row += f"<td><span style='{style}'>{token_str}</span> ({prob:.2%})</td>"
|
| 366 |
+
|
| 367 |
+
for token_str, prob in tokens[1:]:
|
| 368 |
+
row += f"<td>{token_str} ({prob:.2%})</td>"
|
| 369 |
+
|
| 370 |
+
row += "</tr>"
|
| 371 |
+
html_rows += row
|
| 372 |
+
|
| 373 |
+
html_code = f'''
|
| 374 |
+
<html>
|
| 375 |
+
<head>
|
| 376 |
+
<meta charset="utf-8">
|
| 377 |
+
<style>
|
| 378 |
+
table {{
|
| 379 |
+
font-family: 'Noto Sans';
|
| 380 |
+
font-size: 12px;
|
| 381 |
+
border-collapse: collapse;
|
| 382 |
+
table-layout: fixed;
|
| 383 |
+
width: 100%;
|
| 384 |
+
}}
|
| 385 |
+
th, td {{
|
| 386 |
+
border: 1px solid black;
|
| 387 |
+
padding: 8px;
|
| 388 |
+
width: 150px;
|
| 389 |
+
height: 30px;
|
| 390 |
+
overflow: hidden;
|
| 391 |
+
text-overflow: ellipsis;
|
| 392 |
+
white-space: nowrap;
|
| 393 |
+
text-align: center;
|
| 394 |
+
}}
|
| 395 |
+
th.layer {{
|
| 396 |
+
width: 100px;
|
| 397 |
+
}}
|
| 398 |
+
th.title {{
|
| 399 |
+
font-size: 14px;
|
| 400 |
+
padding: 10px;
|
| 401 |
+
height: auto;
|
| 402 |
+
white-space: normal;
|
| 403 |
+
overflow: visible;
|
| 404 |
+
}}
|
| 405 |
+
</style>
|
| 406 |
+
</head>
|
| 407 |
+
<body style="background-color: white;">
|
| 408 |
+
<table>
|
| 409 |
+
<tr>
|
| 410 |
+
<th colspan="4" class="title">
|
| 411 |
+
Hidden states per Transformer layer (LLM) for Prediction
|
| 412 |
+
</th>
|
| 413 |
+
</tr>
|
| 414 |
+
<tr>
|
| 415 |
+
<th class="layer">Layer ⬆️</th>
|
| 416 |
+
<th>Top 1</th>
|
| 417 |
+
<th>Top 2</th>
|
| 418 |
+
<th>Top 3</th>
|
| 419 |
+
</tr>
|
| 420 |
+
{html_rows}
|
| 421 |
+
</table>
|
| 422 |
+
</body>
|
| 423 |
+
</html>
|
| 424 |
+
'''
|
| 425 |
+
|
| 426 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 427 |
+
hti = Html2Image(output_path=tmpdir)
|
| 428 |
+
hti.browser_flags = [
|
| 429 |
+
"--headless=new",
|
| 430 |
+
"--disable-gpu",
|
| 431 |
+
"--disable-software-rasterizer",
|
| 432 |
+
"--no-sandbox",
|
| 433 |
+
]
|
| 434 |
+
filename = str(uuid.uuid4()) + ".png"
|
| 435 |
+
hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000))
|
| 436 |
+
img_path = os.path.join(tmpdir, filename)
|
| 437 |
+
img_cv2 = cv2.imread(img_path)[:, :, ::-1]
|
| 438 |
+
os.remove(img_path)
|
| 439 |
+
return img_cv2
|
| 440 |
+
|
| 441 |
+
|
| 442 |
model = AutoModel.from_pretrained(
|
| 443 |
"khang119966/Vintern-1B-v3_5-explainableAI",
|
| 444 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 455 |
response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \
|
| 456 |
attention_visualize=True,last_visualize_layers=7,raw_image_path=test_image,target_aspect_ratio=target_aspect_ratio)
|
| 457 |
print(response)
|
| 458 |
+
generation_output = response
|
| 459 |
+
raw_image_path = image
|
| 460 |
+
|
| 461 |
return "path_to_generated_video.mp4"
|
| 462 |
|
| 463 |
with gr.Blocks() as demo:
|
|
|
|
| 465 |
|
| 466 |
with gr.Row():
|
| 467 |
with gr.Column():
|
| 468 |
+
image = gr.Image(label="Upload your image", type = 'filepath')
|
| 469 |
prompt = gr.Textbox(label="Describe your prompt", value="List all the text." )
|
| 470 |
max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=512, value=50)
|
| 471 |
btn = gr.Button("Attenion Video")
|