Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from PIL import Image | |
| import torch | |
| from torchvision import transforms | |
| from transformers import AutoModelForImageSegmentation | |
| # Setup constants | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Define image transformation pipeline | |
| transform_image = transforms.Compose([ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| # Load the model ONCE globally | |
| try: | |
| torch.set_float32_matmul_precision("high") | |
| model = AutoModelForImageSegmentation.from_pretrained( | |
| "ZhengPeng7/BiRefNet_lite", | |
| trust_remote_code=True | |
| ).to(DEVICE) | |
| print("Model loaded successfully.") | |
| except Exception as e: | |
| print(f"Error loading model: {str(e)}") | |
| model = None | |
| def process_image(image): | |
| """Process a single image and remove its background""" | |
| image = image.convert("RGB") | |
| original_size = image.size | |
| input_tensor = transform_image(image).unsqueeze(0).to(DEVICE) | |
| with torch.no_grad(): | |
| preds = model(input_tensor)[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| mask = transforms.ToPILImage()(pred).resize(original_size) | |
| result = image.copy() | |
| result.putalpha(mask) | |
| return result | |
| def predict(image): | |
| """Gradio interface function""" | |
| if model is None: | |
| raise gr.Error("Model not loaded. Check server logs.") | |
| if image is None: | |
| return None, None # Return None for both image and file | |
| try: | |
| result_image = process_image(image) | |
| file_path = "processed_image.png" | |
| result_image.save(file_path, "PNG") | |
| return result_image, file_path | |
| except Exception as e: | |
| raise gr.Error(f"Error processing image: {e}") | |
| # Gradio interface | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=[ | |
| gr.Image(type="pil", label="Processed Image"), | |
| gr.File(label="Download Processed Image") | |
| ], | |
| examples=[['example.jpeg']], | |
| title="Background Removal App", | |
| description="Upload an image to remove its background and download the processed image as a PNG." | |
| ) | |
| interface.launch() | |