Spaces:
Paused
Paused
| from typing import Any | |
| from typings.extra import F0Method | |
| from multiprocessing import cpu_count | |
| from pathlib import Path | |
| import torch | |
| from fairseq import checkpoint_utils | |
| from scipy.io import wavfile | |
| from vc.infer_pack.models import ( | |
| SynthesizerTrnMs256NSFsid, | |
| SynthesizerTrnMs256NSFsid_nono, | |
| SynthesizerTrnMs768NSFsid, | |
| SynthesizerTrnMs768NSFsid_nono, | |
| ) | |
| from vc.my_utils import load_audio | |
| from vc.vc_infer_pipeline import VC | |
| SRC_DIR = Path(__file__).resolve().parent.parent | |
| class Config: | |
| def __init__(self, device, is_half): | |
| self.device = device | |
| self.is_half = is_half | |
| self.n_cpu = 0 | |
| self.gpu_name = None | |
| self.gpu_mem = None | |
| self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | |
| def device_config(self) -> tuple: | |
| if torch.cuda.is_available(): | |
| i_device = int(self.device.split(":")[-1]) | |
| self.gpu_name = torch.cuda.get_device_name(i_device) | |
| if ( | |
| ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | |
| or "P40" in self.gpu_name.upper() | |
| or "1060" in self.gpu_name | |
| or "1070" in self.gpu_name | |
| or "1080" in self.gpu_name | |
| ): | |
| print("16 series/10 series P40 forced single precision") | |
| self.is_half = False | |
| for config_file in ["32k.json", "40k.json", "48k.json"]: | |
| with open(SRC_DIR / "vc" / "configs" / config_file, "r") as f: | |
| strr = f.read().replace("true", "false") | |
| with open(SRC_DIR / "vc" / "configs" / config_file, "w") as f: | |
| f.write(strr) | |
| with open( | |
| SRC_DIR / "vc" / "trainset_preprocess_pipeline_print.py", "r" | |
| ) as f: | |
| strr = f.read().replace("3.7", "3.0") | |
| with open( | |
| SRC_DIR / "vc" / "trainset_preprocess_pipeline_print.py", "w" | |
| ) as f: | |
| f.write(strr) | |
| else: | |
| self.gpu_name = None | |
| self.gpu_mem = int( | |
| torch.cuda.get_device_properties(i_device).total_memory | |
| / 1024 | |
| / 1024 | |
| / 1024 | |
| + 0.4 | |
| ) | |
| if self.gpu_mem <= 4: | |
| with open( | |
| SRC_DIR / "vc" / "trainset_preprocess_pipeline_print.py", "r" | |
| ) as f: | |
| strr = f.read().replace("3.7", "3.0") | |
| with open( | |
| SRC_DIR / "vc" / "trainset_preprocess_pipeline_print.py", "w" | |
| ) as f: | |
| f.write(strr) | |
| elif torch.backends.mps.is_available(): | |
| print("No supported N-card found, use MPS for inference") | |
| self.device = "mps" | |
| else: | |
| print("No supported N-card found, use CPU for inference") | |
| self.device = "cpu" | |
| self.is_half = True | |
| if self.n_cpu == 0: | |
| self.n_cpu = cpu_count() | |
| if self.is_half: | |
| # 6G memory config | |
| x_pad = 3 | |
| x_query = 10 | |
| x_center = 60 | |
| x_max = 65 | |
| else: | |
| # 5G memory config | |
| x_pad = 1 | |
| x_query = 6 | |
| x_center = 38 | |
| x_max = 41 | |
| if self.gpu_mem != None and self.gpu_mem <= 4: | |
| x_pad = 1 | |
| x_query = 5 | |
| x_center = 30 | |
| x_max = 32 | |
| return x_pad, x_query, x_center, x_max | |
| def load_hubert(device: str, is_half: bool, model_path: str) -> torch.nn.Module: | |
| models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
| [model_path], | |
| suffix="", | |
| ) | |
| hubert = models[0] | |
| hubert = hubert.to(device) | |
| if is_half: | |
| hubert = hubert.half() | |
| else: | |
| hubert = hubert.float() | |
| hubert.eval() | |
| return hubert | |
| def get_vc( | |
| device: str, is_half: bool, config: Config, model_path: str | |
| ) -> tuple[dict[str, Any], str, torch.nn.Module, int, VC]: | |
| cpt = torch.load(model_path, map_location="cpu") | |
| if "config" not in cpt or "weight" not in cpt: | |
| raise ValueError( | |
| f"Incorrect format for {model_path}. Use a voice model trained using RVC v2 instead." | |
| ) | |
| tgt_sr = cpt["config"][-1] | |
| cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | |
| if_f0 = cpt.get("f0", 1) | |
| version = cpt.get("version", "v1") | |
| if version == "v1": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
| elif version == "v2": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
| del net_g.enc_q | |
| print(net_g.load_state_dict(cpt["weight"], strict=False)) | |
| net_g.eval().to(device) | |
| if is_half: | |
| net_g = net_g.half() | |
| else: | |
| net_g = net_g.float() | |
| vc = VC(tgt_sr, config) | |
| return cpt, version, net_g, tgt_sr, vc | |
| def rvc_infer( | |
| index_path: str, | |
| index_rate: float, | |
| input_path: str, | |
| output_path: str, | |
| pitch_change: int, | |
| f0_method: F0Method, | |
| cpt: dict[str, Any], | |
| version: str, | |
| net_g: torch.nn.Module, | |
| filter_radius: int, | |
| tgt_sr: int, | |
| rms_mix_rate: float, | |
| protect: float, | |
| crepe_hop_length: int, | |
| vc: VC, | |
| hubert_model: torch.nn.Module, | |
| resample_sr: int, | |
| ) -> None: | |
| audio = load_audio(input_path, 16000) | |
| times = [0, 0, 0] | |
| if_f0 = cpt.get("f0", 1) | |
| audio_opt, output_sr = vc.pipeline( | |
| hubert_model, | |
| net_g, | |
| 0, | |
| audio, | |
| input_path, | |
| times, | |
| pitch_change, | |
| f0_method, | |
| index_path, | |
| index_rate, | |
| if_f0, | |
| filter_radius, | |
| tgt_sr, | |
| resample_sr, | |
| rms_mix_rate, | |
| version, | |
| protect, | |
| crepe_hop_length, | |
| ) | |
| wavfile.write(output_path, output_sr, audio_opt) | |