Spaces:
Runtime error
Runtime error
| import copy | |
| import math | |
| import warnings | |
| from typing import List, Optional, Tuple, Union | |
| from transformers import MT5PreTrainedModel | |
| from transformers.models.mt5 import MT5Stack | |
| from transformers.modeling_outputs import Seq2SeqModelOutput,Seq2SeqLMOutput, BaseModelOutput | |
| from transformers.utils import ( | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
| import torch | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from .config import MT5Config | |
| from .docstrings import ( | |
| PARALLELIZE_DOCSTRING, | |
| DEPARALLELIZE_DOCSTRING, | |
| __HEAD_MASK_WARNING_MSG, | |
| MT5_START_DOCSTRING, | |
| MT5_INPUTS_DOCSTRING, | |
| ) | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "MT5Config" | |
| _CHECKPOINT_FOR_DOC = "mt5-small" | |
| class MT5Model(MT5PreTrainedModel): | |
| r""" | |
| Examples: | |
| ```python | |
| >>> from transformers import MT5Model, AutoTokenizer | |
| >>> model = MT5Model.from_pretrained("google/mt5-small") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") | |
| >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." | |
| >>> summary = "Weiter Verhandlung in Syrien." | |
| >>> inputs = tokenizer(article, return_tensors="pt") | |
| >>> labels = tokenizer(text_target=summary, return_tensors="pt") | |
| >>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"]) | |
| >>> hidden_states = outputs.last_hidden_state | |
| ```""" | |
| model_type = "mt5" | |
| config_class = MT5Config | |
| _keys_to_ignore_on_load_missing = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] | |
| _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] | |
| _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
| # Copied from transformers.models.t5.modeling_t5.T5Model.__init__ with T5->MT5 | |
| def __init__(self, config: MT5Config): | |
| super().__init__(config) | |
| self.encoder_embedding = nn.Embedding(config.encoder_vocab_size, config.d_model) | |
| if config.shared_embedding: | |
| self.decoder_embedding = self.encoder_embedding | |
| else: | |
| self.decoder_emebedding = nn.Embedding(config.decoder_vocab_size, config.d_model) | |
| encoder_config = copy.deepcopy(config) | |
| encoder_config.is_decoder = False | |
| encoder_config.use_cache = False | |
| encoder_config.is_encoder_decoder = False | |
| self.encoder = MT5Stack(encoder_config, self.encoder_embedding) | |
| decoder_config = copy.deepcopy(config) | |
| decoder_config.is_decoder = True | |
| decoder_config.is_encoder_decoder = False | |
| decoder_config.num_layers = config.num_decoder_layers | |
| self.decoder = MT5Stack(decoder_config, self.decoder_emebedding) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| # Copied from transformers.models.t5.modeling_t5.T5Model.parallelize | |
| def parallelize(self, device_map=None): | |
| warnings.warn( | |
| "`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" | |
| " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | |
| " `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" | |
| " 0, 'encoder.block.1': 1, ...}", | |
| FutureWarning, | |
| ) | |
| self.device_map = ( | |
| get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.encoder.block)) | |
| self.encoder.parallelize(self.device_map) | |
| self.decoder.parallelize(self.device_map) | |
| self.model_parallel = True | |
| # Copied from transformers.models.t5.modeling_t5.T5Model.deparallelize | |
| def deparallelize(self): | |
| warnings.warn( | |
| "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
| FutureWarning, | |
| ) | |
| self.encoder.deparallelize() | |
| self.decoder.deparallelize() | |
| self.encoder = self.encoder.to("cpu") | |
| self.decoder = self.decoder.to("cpu") | |
| self.model_parallel = False | |
| self.device_map = None | |
| torch.cuda.empty_cache() | |
| # Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings | |
| def get_input_embeddings(self): | |
| return self.encoder_embedding | |
| # Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings | |
| def set_input_embeddings(self, new_embeddings): | |
| self.encoder_embedding = new_embeddings | |
| self.encoder.set_input_embeddings(new_embeddings) | |
| self.decoder.set_input_embeddings(new_embeddings) | |
| # Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder | |
| def get_encoder(self): | |
| return self.encoder | |
| # Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder | |
| def get_decoder(self): | |
| return self.decoder | |
| # Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| # Copied from transformers.models.t5.modeling_t5.T5Model.forward with T5->MT5, t5->mt5 | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| decoder_head_mask: Optional[torch.FloatTensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| decoder_inputs_embeds: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: | |
| r""" | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, MT5Model | |
| >>> tokenizer = AutoTokenizer.from_pretrained("mt5-small") | |
| >>> model = MT5Model.from_pretrained("mt5-small") | |
| >>> input_ids = tokenizer( | |
| ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" | |
| ... ).input_ids # Batch size 1 | |
| >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 | |
| >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for MT5Model. | |
| >>> # This is not needed for torch's MT5ForConditionalGeneration as it does this internally using labels arg. | |
| >>> decoder_input_ids = model._shift_right(decoder_input_ids) | |
| >>> # forward pass | |
| >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
| >>> last_hidden_states = outputs.last_hidden_state | |
| ```""" | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
| if head_mask is not None and decoder_head_mask is None: | |
| if self.config.num_layers == self.config.num_decoder_layers: | |
| warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
| decoder_head_mask = head_mask | |
| # Encode if needed (training, first prediction pass) | |
| if encoder_outputs is None: | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
| ) | |
| hidden_states = encoder_outputs[0] | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| hidden_states = hidden_states.to(self.decoder.first_device) | |
| if decoder_input_ids is not None: | |
| decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(self.decoder.first_device) | |
| if decoder_attention_mask is not None: | |
| decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) | |
| # Decode | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| inputs_embeds=decoder_inputs_embeds, | |
| past_key_values=past_key_values, | |
| encoder_hidden_states=hidden_states, | |
| encoder_attention_mask=attention_mask, | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| if not return_dict: | |
| return decoder_outputs + encoder_outputs | |
| return Seq2SeqModelOutput( | |
| last_hidden_state=decoder_outputs.last_hidden_state, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| class MT5ForConditionalGeneration(MT5PreTrainedModel): | |
| r""" | |
| Examples: | |
| ```python | |
| >>> from transformers import MT5ForConditionalGeneration, AutoTokenizer | |
| >>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") | |
| >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." | |
| >>> summary = "Weiter Verhandlung in Syrien." | |
| >>> inputs = tokenizer(article, text_target=summary, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> loss = outputs.loss | |
| ```""" | |
| model_type = "mt5" | |
| config_class = MT5Config | |
| _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] | |
| _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.__init__ with T5->MT5 | |
| def __init__(self, config: MT5Config): | |
| super().__init__(config) | |
| self.model_dim = config.d_model | |
| self.encoder_embedding = nn.Embedding(config.encoder_vocab_size, config.d_model) | |
| if config.shared_embedding: | |
| self.decoder_embedding = self.encoder_embedding | |
| else: | |
| self.decoder_emebedding = nn.Embedding(config.decoder_vocab_size, config.d_model) | |
| encoder_config = copy.deepcopy(config) | |
| encoder_config.is_decoder = False | |
| encoder_config.use_cache = False | |
| encoder_config.is_encoder_decoder = False | |
| self.encoder = MT5Stack(encoder_config, self.encoder_embedding) | |
| decoder_config = copy.deepcopy(config) | |
| decoder_config.is_decoder = True | |
| decoder_config.is_encoder_decoder = False | |
| decoder_config.num_layers = config.num_decoder_layers | |
| self.decoder = MT5Stack(decoder_config, self.decoder_emebedding) | |
| self.lm_head = nn.Linear(config.d_model, config.decoder_vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.parallelize | |
| def parallelize(self, device_map=None): | |
| warnings.warn( | |
| "`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" | |
| " should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" | |
| " provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" | |
| " {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", | |
| FutureWarning, | |
| ) | |
| self.device_map = ( | |
| get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.encoder.block)) | |
| self.encoder.parallelize(self.device_map) | |
| self.decoder.parallelize(self.device_map) | |
| self.lm_head = self.lm_head.to(self.decoder.first_device) | |
| self.model_parallel = True | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.deparallelize | |
| def deparallelize(self): | |
| warnings.warn( | |
| "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
| FutureWarning, | |
| ) | |
| self.encoder.deparallelize() | |
| self.decoder.deparallelize() | |
| self.encoder = self.encoder.to("cpu") | |
| self.decoder = self.decoder.to("cpu") | |
| self.lm_head = self.lm_head.to("cpu") | |
| self.model_parallel = False | |
| self.device_map = None | |
| torch.cuda.empty_cache() | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_input_embeddings | |
| def get_input_embeddings(self): | |
| return self.encoder_embedding | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_input_embeddings | |
| def set_input_embeddings(self, new_embeddings): | |
| self.encoder_embedding = new_embeddings | |
| self.encoder.set_input_embeddings(new_embeddings) | |
| self.decoder.set_input_embeddings(new_embeddings) | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_output_embeddings | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_output_embeddings | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_encoder | |
| def get_encoder(self): | |
| return self.encoder | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_decoder | |
| def get_decoder(self): | |
| return self.decoder | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.forward with T5->MT5, t5->mt5 | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| decoder_head_mask: Optional[torch.FloatTensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., | |
| config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for | |
| labels in `[0, ..., config.vocab_size]` | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer, MT5ForConditionalGeneration | |
| >>> tokenizer = AutoTokenizer.from_pretrained("mt5-small") | |
| >>> model = MT5ForConditionalGeneration.from_pretrained("mt5-small") | |
| >>> # training | |
| >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids | |
| >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids | |
| >>> outputs = model(input_ids=input_ids, labels=labels) | |
| >>> loss = outputs.loss | |
| >>> logits = outputs.logits | |
| >>> # inference | |
| >>> input_ids = tokenizer( | |
| ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" | |
| ... ).input_ids # Batch size 1 | |
| >>> outputs = model.generate(input_ids) | |
| >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
| >>> # studies have shown that owning a dog is good for you. | |
| ```""" | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
| if head_mask is not None and decoder_head_mask is None: | |
| if self.config.num_layers == self.config.num_decoder_layers: | |
| warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
| decoder_head_mask = head_mask | |
| # Encode if needed (training, first prediction pass) | |
| if encoder_outputs is None: | |
| # Convert encoder inputs in embeddings if needed | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
| ) | |
| hidden_states = encoder_outputs[0] | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
| # get decoder inputs from shifting lm labels to the right | |
| decoder_input_ids = self._shift_right(labels) | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| hidden_states = hidden_states.to(self.decoder.first_device) | |
| if decoder_input_ids is not None: | |
| decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(self.decoder.first_device) | |
| if decoder_attention_mask is not None: | |
| decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) | |
| # Decode | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| inputs_embeds=decoder_inputs_embeds, | |
| past_key_values=past_key_values, | |
| encoder_hidden_states=hidden_states, | |
| encoder_attention_mask=attention_mask, | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = decoder_outputs[0] | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.encoder.first_device) | |
| self.lm_head = self.lm_head.to(self.encoder.first_device) | |
| sequence_output = sequence_output.to(self.lm_head.weight.device) | |
| if self.config.tie_word_embeddings: | |
| # Rescale output before projecting on vocab | |
| # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 | |
| sequence_output = sequence_output * (self.model_dim**-0.5) | |
| lm_logits = self.lm_head(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=-100) | |
| # move labels to correct device to enable PP | |
| labels = labels.to(lm_logits.device) | |
| loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | |
| # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 | |
| if not return_dict: | |
| output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | |
| return ((loss,) + output) if loss is not None else output | |
| return Seq2SeqLMOutput( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_inputs_for_generation | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids, | |
| past_key_values=None, | |
| attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| decoder_attention_mask=None, | |
| cross_attn_head_mask=None, | |
| use_cache=None, | |
| encoder_outputs=None, | |
| **kwargs, | |
| ): | |
| # cut decoder_input_ids if past_key_values is used | |
| if past_key_values is not None: | |
| past_length = past_key_values[0][0].shape[2] | |
| # Some generation methods already pass only the last input ID | |
| if input_ids.shape[1] > past_length: | |
| remove_prefix_length = past_length | |
| else: | |
| # Default to old behavior: keep only final ID | |
| remove_prefix_length = input_ids.shape[1] - 1 | |
| input_ids = input_ids[:, remove_prefix_length:] | |
| return { | |
| "decoder_input_ids": input_ids, | |
| "past_key_values": past_key_values, | |
| "encoder_outputs": encoder_outputs, | |
| "attention_mask": attention_mask, | |
| "head_mask": head_mask, | |
| "decoder_head_mask": decoder_head_mask, | |
| "decoder_attention_mask": decoder_attention_mask, | |
| "cross_attn_head_mask": cross_attn_head_mask, | |
| "use_cache": use_cache, | |
| } | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_decoder_input_ids_from_labels | |
| def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
| return self._shift_right(labels) | |
| # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration._reorder_cache | |
| def _reorder_cache(self, past_key_values, beam_idx): | |
| # if decoder past is not included in output | |
| # speedy decoding is disabled and no need to reorder | |
| if past_key_values is None: | |
| logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") | |
| return past_key_values | |
| reordered_decoder_past = () | |
| for layer_past_states in past_key_values: | |
| # get the correct batch idx from layer past batch dim | |
| # batch dim of `past` is at 2nd position | |
| reordered_layer_past_states = () | |
| for layer_past_state in layer_past_states: | |
| # need to set correct `past` for each of the four key / value states | |
| reordered_layer_past_states = reordered_layer_past_states + ( | |
| layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), | |
| ) | |
| if reordered_layer_past_states[0].shape != layer_past_states[0].shape: | |
| raise ValueError( | |
| f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" | |
| ) | |
| if len(reordered_layer_past_states) != len(layer_past_states): | |
| raise ValueError( | |
| f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" | |
| ) | |
| reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) | |
| return reordered_decoder_past |