alan commited on
Commit
d40aa10
·
1 Parent(s): 4c2d67c
Files changed (1) hide show
  1. app.py +7 -23
app.py CHANGED
@@ -232,8 +232,6 @@ DESCR = """
232
  # Japanese TTS Arena: Benchmarking Japanese TTS Models in the Wild
233
 
234
  Vote to help the community find the best available text-to-speech model!
235
-
236
- _This arena is inspired and built on [TTS Arena](https://huggingface.co/spaces/TTS-AGI/TTS-Arena)._
237
  """.strip()
238
  # INSTR = """
239
  # ## Instructions
@@ -264,7 +262,7 @@ Please [create a Discussion](https://huggingface.co/spaces/{SPACE_ID}/discussion
264
  ABOUT = f"""
265
  ## 📄 About
266
 
267
- The TTS Arena evaluates leading speech synthesis models. It is inspired by LMsys's [Chatbot Arena](https://chat.lmsys.org/).
268
 
269
  ### Motivation
270
 
@@ -276,16 +274,7 @@ The leaderboard allows a user to enter text, which will be synthesized by two mo
276
 
277
  ### Credits
278
 
279
- Thank you to the following individuals who helped make this project possible:
280
-
281
- * VB ([Twitter](https://twitter.com/reach_vb) / [Hugging Face](https://huggingface.co/reach-vb))
282
- * Clémentine Fourrier ([Twitter](https://twitter.com/clefourrier) / [Hugging Face](https://huggingface.co/clefourrier))
283
- * Lucain Pouget ([Twitter](https://twitter.com/Wauplin) / [Hugging Face](https://huggingface.co/Wauplin))
284
- * Yoach Lacombe ([Twitter](https://twitter.com/yoachlacombe) / [Hugging Face](https://huggingface.co/ylacombe))
285
- * Main Horse ([Twitter](https://twitter.com/main_horse) / [Hugging Face](https://huggingface.co/main-horse))
286
- * Sanchit Gandhi ([Twitter](https://twitter.com/sanchitgandhi99) / [Hugging Face](https://huggingface.co/sanchit-gandhi))
287
- * Apolinário Passos ([Twitter](https://twitter.com/multimodalart) / [Hugging Face](https://huggingface.co/multimodalart))
288
- * Pedro Cuenca ([Twitter](https://twitter.com/pcuenq) / [Hugging Face](https://huggingface.co/pcuenq))
289
 
290
  {request}
291
 
@@ -296,13 +285,11 @@ We may store text you enter and generated audio. We store a unique ID for each s
296
  ### License
297
 
298
  Generated audio clips cannot be redistributed and may be used for personal, non-commercial use only.
299
-
300
- Random sentences are sourced from a filtered subset of the [Harvard Sentences](https://www.cs.columbia.edu/~hgs/audio/harvard.html).
301
  """.strip()
302
  LDESC = """
303
  ## 🏆 Leaderboard
304
 
305
- Vote to help the community determine the best text-to-speech (TTS) models.
306
 
307
  The leaderboard displays models in descending order of how natural they sound (based on votes cast by the community).
308
 
@@ -445,7 +432,8 @@ def get_leaderboard(reveal_prelim = False):
445
  cursor = conn.cursor()
446
  sql = 'SELECT name, upvote, downvote FROM model'
447
  # if not reveal_prelim: sql += ' WHERE EXISTS (SELECT 1 FROM model WHERE (upvote + downvote) > 750)'
448
- if not reveal_prelim: sql += ' WHERE (upvote + downvote) > 500'
 
449
  cursor.execute(sql)
450
  data = cursor.fetchall()
451
  df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
@@ -676,7 +664,7 @@ def synthandreturn(text):
676
  # Get two random models
677
  mdl1, mdl2 = random.sample(list(AVAILABLE_MODELS.keys()), 2)
678
  log_text(text)
679
- print("[debug] Using", mdl1, mdl2)
680
  def predict_and_update_result(text, model, result_storage):
681
  try:
682
  # if model in AVAILABLE_MODELS:
@@ -693,10 +681,6 @@ def synthandreturn(text):
693
  # result = router.predict(text, AVAILABLE_MODELS[model].lower(), api_name="/synthesize")
694
  if model in model_kwargs:
695
  router = Client(model_links[model])
696
- # debug
697
- print(model_args[model])
698
- print(model_kwargs[model])
699
-
700
  result = router.predict(*model_args[model], **model_kwargs[model])
701
  else:
702
  result = get_tts_file(text, model)
@@ -933,7 +917,7 @@ with gr.Blocks() as about:
933
  # dbtext = gr.Textbox(label="Type \"delete db\" to confirm", placeholder="delete db")
934
  # ddb = gr.Button("Delete DB")
935
  # ddb.click(del_db, inputs=dbtext, outputs=ddb)
936
- with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="TTS Arena copy") as demo:
937
  gr.Markdown(DESCR)
938
  # gr.TabbedInterface([vote, leaderboard, about, admin], ['Vote', 'Leaderboard', 'About', 'Admin (ONLY IN BETA)'])
939
  gr.TabbedInterface([vote, leaderboard, about], ['🗳️ Vote', '🏆 Leaderboard', '📄 About'])
 
232
  # Japanese TTS Arena: Benchmarking Japanese TTS Models in the Wild
233
 
234
  Vote to help the community find the best available text-to-speech model!
 
 
235
  """.strip()
236
  # INSTR = """
237
  # ## Instructions
 
262
  ABOUT = f"""
263
  ## 📄 About
264
 
265
+ The Japanese TTS Arena evaluates leading speech synthesis models. It is inspired by LMsys's [Chatbot Arena](https://chat.lmsys.org/) and [TTS Arena](https://huggingface.co/spaces/TTS-AGI/TTS-Arena).
266
 
267
  ### Motivation
268
 
 
274
 
275
  ### Credits
276
 
277
+ Thank you to the open-source code from TTS Arena which helped make this project possible.
 
 
 
 
 
 
 
 
 
278
 
279
  {request}
280
 
 
285
  ### License
286
 
287
  Generated audio clips cannot be redistributed and may be used for personal, non-commercial use only.
 
 
288
  """.strip()
289
  LDESC = """
290
  ## 🏆 Leaderboard
291
 
292
+ Vote to help the community determine the best Japanese text-to-speech (TTS) models.
293
 
294
  The leaderboard displays models in descending order of how natural they sound (based on votes cast by the community).
295
 
 
432
  cursor = conn.cursor()
433
  sql = 'SELECT name, upvote, downvote FROM model'
434
  # if not reveal_prelim: sql += ' WHERE EXISTS (SELECT 1 FROM model WHERE (upvote + downvote) > 750)'
435
+ # if not reveal_prelim: sql += ' WHERE (upvote + downvote) > 500'
436
+ if not reveal_prelim: sql += ' WHERE (upvote + downvote) > 2'
437
  cursor.execute(sql)
438
  data = cursor.fetchall()
439
  df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
 
664
  # Get two random models
665
  mdl1, mdl2 = random.sample(list(AVAILABLE_MODELS.keys()), 2)
666
  log_text(text)
667
+ # print("[debug] Using", mdl1, mdl2)
668
  def predict_and_update_result(text, model, result_storage):
669
  try:
670
  # if model in AVAILABLE_MODELS:
 
681
  # result = router.predict(text, AVAILABLE_MODELS[model].lower(), api_name="/synthesize")
682
  if model in model_kwargs:
683
  router = Client(model_links[model])
 
 
 
 
684
  result = router.predict(*model_args[model], **model_kwargs[model])
685
  else:
686
  result = get_tts_file(text, model)
 
917
  # dbtext = gr.Textbox(label="Type \"delete db\" to confirm", placeholder="delete db")
918
  # ddb = gr.Button("Delete DB")
919
  # ddb.click(del_db, inputs=dbtext, outputs=ddb)
920
+ with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="JA TTS Arena") as demo:
921
  gr.Markdown(DESCR)
922
  # gr.TabbedInterface([vote, leaderboard, about, admin], ['Vote', 'Leaderboard', 'About', 'Admin (ONLY IN BETA)'])
923
  gr.TabbedInterface([vote, leaderboard, about], ['🗳️ Vote', '🏆 Leaderboard', '📄 About'])