Spaces:
Runtime error
Runtime error
| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import numpy as np | |
| import threading | |
| import time | |
| from torch.nn import functional as F | |
| from contextlib import nullcontext | |
| import uuid | |
| from cosyvoice.utils.common import fade_in_out | |
| class CosyVoiceModel: | |
| def __init__(self, | |
| llm: torch.nn.Module, | |
| flow: torch.nn.Module, | |
| hift: torch.nn.Module, | |
| fp16: bool): | |
| self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| self.llm = llm | |
| self.flow = flow | |
| self.hift = hift | |
| self.fp16 = fp16 | |
| self.token_min_hop_len = 2 * self.flow.input_frame_rate | |
| self.token_max_hop_len = 4 * self.flow.input_frame_rate | |
| self.token_overlap_len = 20 | |
| # mel fade in out | |
| self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256) | |
| self.mel_window = np.hamming(2 * self.mel_overlap_len) | |
| # hift cache | |
| self.mel_cache_len = 20 | |
| self.source_cache_len = int(self.mel_cache_len * 256) | |
| # speech fade in out | |
| self.speech_window = np.hamming(2 * self.source_cache_len) | |
| # rtf and decoding related | |
| self.stream_scale_factor = 1 | |
| assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf' | |
| self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() | |
| self.lock = threading.Lock() | |
| # dict used to store session related variable | |
| self.tts_speech_token_dict = {} | |
| self.llm_end_dict = {} | |
| self.mel_overlap_dict = {} | |
| self.flow_cache_dict = {} | |
| self.hift_cache_dict = {} | |
| def load(self, llm_model, flow_model, hift_model): | |
| self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True) | |
| self.llm.to(self.device).eval() | |
| if self.fp16 is True: | |
| self.llm.half() | |
| self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True) | |
| self.flow.to(self.device).eval() | |
| # in case hift_model is a hifigan model | |
| hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()} | |
| self.hift.load_state_dict(hift_state_dict, strict=True) | |
| self.hift.to(self.device).eval() | |
| def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model): | |
| assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model" | |
| llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device) | |
| self.llm.text_encoder = llm_text_encoder | |
| llm_llm = torch.jit.load(llm_llm_model, map_location=self.device) | |
| self.llm.llm = llm_llm | |
| flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) | |
| self.flow.encoder = flow_encoder | |
| def load_onnx(self, flow_decoder_estimator_model): | |
| import onnxruntime | |
| option = onnxruntime.SessionOptions() | |
| option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
| option.intra_op_num_threads = 1 | |
| providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider'] | |
| del self.flow.decoder.estimator | |
| self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers) | |
| def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): | |
| if self.fp16 is True: | |
| llm_embedding = llm_embedding.half() | |
| with self.llm_context: | |
| for i in self.llm.inference(text=text.to(self.device), | |
| text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_text=prompt_text.to(self.device), | |
| prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_speech_token=llm_prompt_speech_token.to(self.device), | |
| prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device), | |
| embedding=llm_embedding.to(self.device)): | |
| self.tts_speech_token_dict[uuid].append(i) | |
| self.llm_end_dict[uuid] = True | |
| def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0): | |
| tts_mel, flow_cache = self.flow.inference(token=token.to(self.device), | |
| token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_token=prompt_token.to(self.device), | |
| prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_feat=prompt_feat.to(self.device), | |
| prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), | |
| embedding=embedding.to(self.device), | |
| flow_cache=self.flow_cache_dict[uuid]) | |
| self.flow_cache_dict[uuid] = flow_cache | |
| # mel overlap fade in out | |
| if self.mel_overlap_dict[uuid].shape[2] != 0: | |
| tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window) | |
| # append hift cache | |
| if self.hift_cache_dict[uuid] is not None: | |
| hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] | |
| tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) | |
| else: | |
| hift_cache_source = torch.zeros(1, 1, 0) | |
| # keep overlap mel and hift cache | |
| if finalize is False: | |
| self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:] | |
| tts_mel = tts_mel[:, :, :-self.mel_overlap_len] | |
| tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) | |
| if self.hift_cache_dict[uuid] is not None: | |
| tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) | |
| self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:], | |
| 'source': tts_source[:, :, -self.source_cache_len:], | |
| 'speech': tts_speech[:, -self.source_cache_len:]} | |
| tts_speech = tts_speech[:, :-self.source_cache_len] | |
| else: | |
| if speed != 1.0: | |
| assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode' | |
| tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear') | |
| tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) | |
| if self.hift_cache_dict[uuid] is not None: | |
| tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) | |
| return tts_speech | |
| def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192), | |
| prompt_text=torch.zeros(1, 0, dtype=torch.int32), | |
| llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), | |
| flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), | |
| prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs): | |
| # this_uuid is used to track variables related to this inference thread | |
| this_uuid = str(uuid.uuid1()) | |
| with self.lock: | |
| self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False | |
| self.hift_cache_dict[this_uuid] = None | |
| self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0) | |
| self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2) | |
| p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid)) | |
| p.start() | |
| if stream is True: | |
| token_hop_len = self.token_min_hop_len | |
| while True: | |
| time.sleep(0.1) | |
| if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: | |
| this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \ | |
| .unsqueeze(dim=0) | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| finalize=False) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| with self.lock: | |
| self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:] | |
| # increase token_hop_len for better speech quality | |
| token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) | |
| if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: | |
| break | |
| p.join() | |
| # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None | |
| this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| finalize=True) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| else: | |
| # deal with all tokens | |
| p.join() | |
| this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| finalize=True, | |
| speed=speed) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| with self.lock: | |
| self.tts_speech_token_dict.pop(this_uuid) | |
| self.llm_end_dict.pop(this_uuid) | |
| self.mel_overlap_dict.pop(this_uuid) | |
| self.hift_cache_dict.pop(this_uuid) | |
| def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs): | |
| # this_uuid is used to track variables related to this inference thread | |
| this_uuid = str(uuid.uuid1()) | |
| with self.lock: | |
| self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True | |
| self.hift_cache_dict[this_uuid] = None | |
| self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0) | |
| self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2) | |
| if stream is True: | |
| token_hop_len = self.token_min_hop_len | |
| while True: | |
| if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: | |
| this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \ | |
| .unsqueeze(dim=0) | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| finalize=False) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| with self.lock: | |
| self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:] | |
| # increase token_hop_len for better speech quality | |
| token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) | |
| if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: | |
| break | |
| # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None | |
| this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid], dim=1).unsqueeze(dim=0) | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| finalize=True) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| else: | |
| # deal with all tokens | |
| this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| finalize=True, | |
| speed=speed) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| with self.lock: | |
| self.tts_speech_token_dict.pop(this_uuid) | |
| self.llm_end_dict.pop(this_uuid) | |
| self.mel_overlap_dict.pop(this_uuid) | |
| self.hift_cache_dict.pop(this_uuid) | |
| class CosyVoice2Model: | |
| def __init__(self, | |
| llm: torch.nn.Module, | |
| flow: torch.nn.Module, | |
| hift: torch.nn.Module): | |
| self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| self.llm = llm | |
| self.flow = flow | |
| self.hift = hift | |
| self.token_hop_len = 2 * self.flow.input_frame_rate | |
| # here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache | |
| self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate | |
| self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio | |
| # hift cache | |
| self.mel_cache_len = 8 | |
| self.source_cache_len = int(self.mel_cache_len * 480) | |
| # speech fade in out | |
| self.speech_window = np.hamming(2 * self.source_cache_len) | |
| # rtf and decoding related | |
| self.stream_scale_factor = 1 | |
| self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() | |
| self.lock = threading.Lock() | |
| # dict used to store session related variable | |
| self.tts_speech_token_dict = {} | |
| self.llm_end_dict = {} | |
| self.hift_cache_dict = {} | |
| def load(self, llm_model, flow_model, hift_model): | |
| self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True) | |
| self.llm.to(self.device).eval() | |
| self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True) | |
| self.flow.to(self.device).eval() | |
| self.flow.decoder.fp16 = False | |
| # in case hift_model is a hifigan model | |
| hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()} | |
| self.hift.load_state_dict(hift_state_dict, strict=True) | |
| self.hift.to(self.device).eval() | |
| def load_jit(self, flow_encoder_model): | |
| flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) | |
| self.flow.encoder = flow_encoder | |
| def load_onnx(self, flow_decoder_estimator_model): | |
| import onnxruntime | |
| option = onnxruntime.SessionOptions() | |
| option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
| option.intra_op_num_threads = 1 | |
| providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider'] | |
| del self.flow.decoder.estimator | |
| self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers) | |
| def load_trt(self, flow_decoder_estimator_model): | |
| del self.flow.decoder.estimator | |
| import tensorrt as trt | |
| with open(flow_decoder_estimator_model, 'rb') as f: | |
| self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read()) | |
| self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context() | |
| self.flow.decoder.fp16 = True | |
| def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): | |
| with self.llm_context: | |
| for i in self.llm.inference(text=text.to(self.device), | |
| text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_text=prompt_text.to(self.device), | |
| prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_speech_token=llm_prompt_speech_token.to(self.device), | |
| prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device), | |
| embedding=llm_embedding.to(self.device)): | |
| self.tts_speech_token_dict[uuid].append(i) | |
| self.llm_end_dict[uuid] = True | |
| def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0): | |
| tts_mel, _ = self.flow.inference(token=token.to(self.device), | |
| token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_token=prompt_token.to(self.device), | |
| prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), | |
| prompt_feat=prompt_feat.to(self.device), | |
| prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), | |
| embedding=embedding.to(self.device), | |
| finalize=finalize) | |
| tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:] | |
| # append hift cache | |
| if self.hift_cache_dict[uuid] is not None: | |
| hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] | |
| tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) | |
| else: | |
| hift_cache_source = torch.zeros(1, 1, 0) | |
| # keep overlap mel and hift cache | |
| if finalize is False: | |
| tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) | |
| if self.hift_cache_dict[uuid] is not None: | |
| tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) | |
| self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:], | |
| 'source': tts_source[:, :, -self.source_cache_len:], | |
| 'speech': tts_speech[:, -self.source_cache_len:]} | |
| tts_speech = tts_speech[:, :-self.source_cache_len] | |
| else: | |
| if speed != 1.0: | |
| assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode' | |
| tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear') | |
| tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) | |
| if self.hift_cache_dict[uuid] is not None: | |
| tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) | |
| return tts_speech | |
| def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192), | |
| prompt_text=torch.zeros(1, 0, dtype=torch.int32), | |
| llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), | |
| flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), | |
| prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs): | |
| # this_uuid is used to track variables related to this inference thread | |
| this_uuid = str(uuid.uuid1()) | |
| with self.lock: | |
| self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False | |
| self.hift_cache_dict[this_uuid] = None | |
| p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid)) | |
| p.start() | |
| if stream is True: | |
| token_offset = 0 | |
| while True: | |
| time.sleep(0.1) | |
| if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len: | |
| this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]) \ | |
| .unsqueeze(dim=0) | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| token_offset=token_offset, | |
| finalize=False) | |
| token_offset += self.token_hop_len | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len: | |
| break | |
| p.join() | |
| # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None | |
| this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| token_offset=token_offset, | |
| finalize=True) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| else: | |
| # deal with all tokens | |
| p.join() | |
| this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) | |
| this_tts_speech = self.token2wav(token=this_tts_speech_token, | |
| prompt_token=flow_prompt_speech_token, | |
| prompt_feat=prompt_speech_feat, | |
| embedding=flow_embedding, | |
| uuid=this_uuid, | |
| token_offset=0, | |
| finalize=True, | |
| speed=speed) | |
| yield {'tts_speech': this_tts_speech.cpu()} | |
| with self.lock: | |
| self.tts_speech_token_dict.pop(this_uuid) | |
| self.llm_end_dict.pop(this_uuid) |