Spaces:
Runtime error
Runtime error
| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import pack, rearrange, repeat | |
| from cosyvoice.utils.common import mask_to_bias | |
| from cosyvoice.utils.mask import add_optional_chunk_mask | |
| from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D | |
| from matcha.models.components.transformer import BasicTransformerBlock | |
| class Transpose(torch.nn.Module): | |
| def __init__(self, dim0: int, dim1: int): | |
| super().__init__() | |
| self.dim0 = dim0 | |
| self.dim1 = dim1 | |
| def forward(self, x: torch.Tensor): | |
| x = torch.transpose(x, self.dim0, self.dim1) | |
| return x | |
| class CausalBlock1D(Block1D): | |
| def __init__(self, dim: int, dim_out: int): | |
| super(CausalBlock1D, self).__init__(dim, dim_out) | |
| self.block = torch.nn.Sequential( | |
| CausalConv1d(dim, dim_out, 3), | |
| Transpose(1, 2), | |
| nn.LayerNorm(dim_out), | |
| Transpose(1, 2), | |
| nn.Mish(), | |
| ) | |
| def forward(self, x: torch.Tensor, mask: torch.Tensor): | |
| output = self.block(x * mask) | |
| return output * mask | |
| class CausalResnetBlock1D(ResnetBlock1D): | |
| def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int=8): | |
| super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups) | |
| self.block1 = CausalBlock1D(dim, dim_out) | |
| self.block2 = CausalBlock1D(dim_out, dim_out) | |
| class CausalConv1d(torch.nn.Conv1d): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: int, | |
| stride: int = 1, | |
| dilation: int = 1, | |
| groups: int = 1, | |
| bias: bool = True, | |
| padding_mode: str = 'zeros', | |
| device=None, | |
| dtype=None | |
| ) -> None: | |
| super(CausalConv1d, self).__init__(in_channels, out_channels, | |
| kernel_size, stride, | |
| padding=0, dilation=dilation, | |
| groups=groups, bias=bias, | |
| padding_mode=padding_mode, | |
| device=device, dtype=dtype | |
| ) | |
| assert stride == 1 | |
| self.causal_padding = (kernel_size - 1, 0) | |
| def forward(self, x: torch.Tensor): | |
| x = F.pad(x, self.causal_padding) | |
| x = super(CausalConv1d, self).forward(x) | |
| return x | |
| class ConditionalDecoder(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| causal=False, | |
| channels=(256, 256), | |
| dropout=0.05, | |
| attention_head_dim=64, | |
| n_blocks=1, | |
| num_mid_blocks=2, | |
| num_heads=4, | |
| act_fn="snake", | |
| ): | |
| """ | |
| This decoder requires an input with the same shape of the target. So, if your text content | |
| is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. | |
| """ | |
| super().__init__() | |
| channels = tuple(channels) | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.causal = causal | |
| self.time_embeddings = SinusoidalPosEmb(in_channels) | |
| time_embed_dim = channels[0] * 4 | |
| self.time_mlp = TimestepEmbedding( | |
| in_channels=in_channels, | |
| time_embed_dim=time_embed_dim, | |
| act_fn="silu", | |
| ) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.mid_blocks = nn.ModuleList([]) | |
| self.up_blocks = nn.ModuleList([]) | |
| output_channel = in_channels | |
| for i in range(len(channels)): # pylint: disable=consider-using-enumerate | |
| input_channel = output_channel | |
| output_channel = channels[i] | |
| is_last = i == len(channels) - 1 | |
| resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
| transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| dim=output_channel, | |
| num_attention_heads=num_heads, | |
| attention_head_dim=attention_head_dim, | |
| dropout=dropout, | |
| activation_fn=act_fn, | |
| ) | |
| for _ in range(n_blocks) | |
| ] | |
| ) | |
| downsample = ( | |
| Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1) | |
| ) | |
| self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) | |
| for _ in range(num_mid_blocks): | |
| input_channel = channels[-1] | |
| out_channels = channels[-1] | |
| resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
| transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| dim=output_channel, | |
| num_attention_heads=num_heads, | |
| attention_head_dim=attention_head_dim, | |
| dropout=dropout, | |
| activation_fn=act_fn, | |
| ) | |
| for _ in range(n_blocks) | |
| ] | |
| ) | |
| self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) | |
| channels = channels[::-1] + (channels[0],) | |
| for i in range(len(channels) - 1): | |
| input_channel = channels[i] * 2 | |
| output_channel = channels[i + 1] | |
| is_last = i == len(channels) - 2 | |
| resnet = CausalResnetBlock1D( | |
| dim=input_channel, | |
| dim_out=output_channel, | |
| time_emb_dim=time_embed_dim, | |
| ) if self.causal else ResnetBlock1D( | |
| dim=input_channel, | |
| dim_out=output_channel, | |
| time_emb_dim=time_embed_dim, | |
| ) | |
| transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| dim=output_channel, | |
| num_attention_heads=num_heads, | |
| attention_head_dim=attention_head_dim, | |
| dropout=dropout, | |
| activation_fn=act_fn, | |
| ) | |
| for _ in range(n_blocks) | |
| ] | |
| ) | |
| upsample = ( | |
| Upsample1D(output_channel, use_conv_transpose=True) | |
| if not is_last | |
| else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1) | |
| ) | |
| self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) | |
| self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1]) | |
| self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) | |
| self.initialize_weights() | |
| def initialize_weights(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv1d): | |
| nn.init.kaiming_normal_(m.weight, nonlinearity="relu") | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.GroupNorm): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.Linear): | |
| nn.init.kaiming_normal_(m.weight, nonlinearity="relu") | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| def forward(self, x, mask, mu, t, spks=None, cond=None): | |
| """Forward pass of the UNet1DConditional model. | |
| Args: | |
| x (torch.Tensor): shape (batch_size, in_channels, time) | |
| mask (_type_): shape (batch_size, 1, time) | |
| t (_type_): shape (batch_size) | |
| spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. | |
| cond (_type_, optional): placeholder for future use. Defaults to None. | |
| Raises: | |
| ValueError: _description_ | |
| ValueError: _description_ | |
| Returns: | |
| _type_: _description_ | |
| """ | |
| t = self.time_embeddings(t).to(t.dtype) | |
| t = self.time_mlp(t) | |
| x = pack([x, mu], "b * t")[0] | |
| if spks is not None: | |
| spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) | |
| x = pack([x, spks], "b * t")[0] | |
| if cond is not None: | |
| x = pack([x, cond], "b * t")[0] | |
| hiddens = [] | |
| masks = [mask] | |
| for resnet, transformer_blocks, downsample in self.down_blocks: | |
| mask_down = masks[-1] | |
| x = resnet(x, mask_down, t) | |
| x = rearrange(x, "b c t -> b t c").contiguous() | |
| # attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down) | |
| attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1) | |
| attn_mask = mask_to_bias(attn_mask==1, x.dtype) | |
| for transformer_block in transformer_blocks: | |
| x = transformer_block( | |
| hidden_states=x, | |
| attention_mask=attn_mask, | |
| timestep=t, | |
| ) | |
| x = rearrange(x, "b t c -> b c t").contiguous() | |
| hiddens.append(x) # Save hidden states for skip connections | |
| x = downsample(x * mask_down) | |
| masks.append(mask_down[:, :, ::2]) | |
| masks = masks[:-1] | |
| mask_mid = masks[-1] | |
| for resnet, transformer_blocks in self.mid_blocks: | |
| x = resnet(x, mask_mid, t) | |
| x = rearrange(x, "b c t -> b t c").contiguous() | |
| # attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid) | |
| attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1) | |
| attn_mask = mask_to_bias(attn_mask==1, x.dtype) | |
| for transformer_block in transformer_blocks: | |
| x = transformer_block( | |
| hidden_states=x, | |
| attention_mask=attn_mask, | |
| timestep=t, | |
| ) | |
| x = rearrange(x, "b t c -> b c t").contiguous() | |
| for resnet, transformer_blocks, upsample in self.up_blocks: | |
| mask_up = masks.pop() | |
| skip = hiddens.pop() | |
| x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] | |
| x = resnet(x, mask_up, t) | |
| x = rearrange(x, "b c t -> b t c").contiguous() | |
| # attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up) | |
| attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1) | |
| attn_mask = mask_to_bias(attn_mask==1, x.dtype) | |
| for transformer_block in transformer_blocks: | |
| x = transformer_block( | |
| hidden_states=x, | |
| attention_mask=attn_mask, | |
| timestep=t, | |
| ) | |
| x = rearrange(x, "b t c -> b c t").contiguous() | |
| x = upsample(x * mask_up) | |
| x = self.final_block(x, mask_up) | |
| output = self.final_proj(x * mask_up) | |
| return output * mask |