Spaces:
Runtime error
Runtime error
| # Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu) | |
| # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn) | |
| # 2024 Alibaba Inc (Xiang Lyu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Modified from ESPnet(https://github.com/espnet/espnet) | |
| """Encoder definition.""" | |
| from typing import Tuple | |
| import torch | |
| from torch import nn | |
| import torch.utils.checkpoint as ckpt | |
| from torch.nn import functional as F | |
| from cosyvoice.transformer.convolution import ConvolutionModule | |
| from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer | |
| from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward | |
| from cosyvoice.utils.class_utils import ( | |
| COSYVOICE_EMB_CLASSES, | |
| COSYVOICE_SUBSAMPLE_CLASSES, | |
| COSYVOICE_ATTENTION_CLASSES, | |
| COSYVOICE_ACTIVATION_CLASSES, | |
| ) | |
| from cosyvoice.utils.mask import make_pad_mask | |
| from cosyvoice.utils.mask import add_optional_chunk_mask | |
| class Upsample1D(nn.Module): | |
| """A 1D upsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| use_conv_transpose (`bool`, default `False`): | |
| option to use a convolution transpose. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| """ | |
| def __init__(self, channels: int, out_channels: int, stride: int=2): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels | |
| self.stride = stride | |
| # In this mode, first repeat interpolate, than conv with stride=1 | |
| self.conv = nn.Conv1d( | |
| self.channels, self.out_channels, stride*2+1, stride=1, | |
| padding=0, | |
| ) | |
| def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor): | |
| outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest") | |
| outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0) | |
| outputs = self.conv(outputs) | |
| return outputs, input_lengths * self.stride | |
| class PreLookaheadLayer(nn.Module): | |
| def __init__(self, channels: int, pre_lookahead_len: int = 1): | |
| super().__init__() | |
| self.channels = channels | |
| self.pre_lookahead_len = pre_lookahead_len | |
| self.conv1 = nn.Conv1d( | |
| channels, channels, | |
| kernel_size=pre_lookahead_len+1, | |
| stride=1, padding=0, | |
| ) | |
| self.conv2 = nn.Conv1d( | |
| channels, channels, | |
| kernel_size=3, stride=1, padding=0, | |
| ) | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| """ | |
| inputs: (batch_size, seq_len, channels) | |
| """ | |
| outputs = inputs.transpose(1, 2).contiguous() | |
| # look ahead | |
| outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0) | |
| outputs = F.leaky_relu(self.conv1(outputs)) | |
| # outputs | |
| outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0) | |
| outputs = self.conv2(outputs) | |
| outputs = outputs.transpose(1, 2).contiguous() | |
| # residual connection | |
| outputs = outputs + inputs | |
| return outputs | |
| class UpsampleConformerEncoder(torch.nn.Module): | |
| def __init__( | |
| self, | |
| input_size: int, | |
| output_size: int = 256, | |
| attention_heads: int = 4, | |
| linear_units: int = 2048, | |
| num_blocks: int = 6, | |
| dropout_rate: float = 0.1, | |
| positional_dropout_rate: float = 0.1, | |
| attention_dropout_rate: float = 0.0, | |
| input_layer: str = "conv2d", | |
| pos_enc_layer_type: str = "rel_pos", | |
| normalize_before: bool = True, | |
| static_chunk_size: int = 0, | |
| use_dynamic_chunk: bool = False, | |
| global_cmvn: torch.nn.Module = None, | |
| use_dynamic_left_chunk: bool = False, | |
| positionwise_conv_kernel_size: int = 1, | |
| macaron_style: bool = True, | |
| selfattention_layer_type: str = "rel_selfattn", | |
| activation_type: str = "swish", | |
| use_cnn_module: bool = True, | |
| cnn_module_kernel: int = 15, | |
| causal: bool = False, | |
| cnn_module_norm: str = "batch_norm", | |
| key_bias: bool = True, | |
| gradient_checkpointing: bool = False, | |
| ): | |
| """ | |
| Args: | |
| input_size (int): input dim | |
| output_size (int): dimension of attention | |
| attention_heads (int): the number of heads of multi head attention | |
| linear_units (int): the hidden units number of position-wise feed | |
| forward | |
| num_blocks (int): the number of decoder blocks | |
| dropout_rate (float): dropout rate | |
| attention_dropout_rate (float): dropout rate in attention | |
| positional_dropout_rate (float): dropout rate after adding | |
| positional encoding | |
| input_layer (str): input layer type. | |
| optional [linear, conv2d, conv2d6, conv2d8] | |
| pos_enc_layer_type (str): Encoder positional encoding layer type. | |
| opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos] | |
| normalize_before (bool): | |
| True: use layer_norm before each sub-block of a layer. | |
| False: use layer_norm after each sub-block of a layer. | |
| static_chunk_size (int): chunk size for static chunk training and | |
| decoding | |
| use_dynamic_chunk (bool): whether use dynamic chunk size for | |
| training or not, You can only use fixed chunk(chunk_size > 0) | |
| or dyanmic chunk size(use_dynamic_chunk = True) | |
| global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module | |
| use_dynamic_left_chunk (bool): whether use dynamic left chunk in | |
| dynamic chunk training | |
| key_bias: whether use bias in attention.linear_k, False for whisper models. | |
| gradient_checkpointing: rerunning a forward-pass segment for each | |
| checkpointed segment during backward. | |
| """ | |
| super().__init__() | |
| self._output_size = output_size | |
| self.global_cmvn = global_cmvn | |
| self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer]( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size, | |
| positional_dropout_rate), | |
| ) | |
| self.normalize_before = normalize_before | |
| self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) | |
| self.static_chunk_size = static_chunk_size | |
| self.use_dynamic_chunk = use_dynamic_chunk | |
| self.use_dynamic_left_chunk = use_dynamic_left_chunk | |
| self.gradient_checkpointing = gradient_checkpointing | |
| activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]() | |
| # self-attention module definition | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| key_bias, | |
| ) | |
| # feed-forward module definition | |
| positionwise_layer_args = ( | |
| output_size, | |
| linear_units, | |
| dropout_rate, | |
| activation, | |
| ) | |
| # convolution module definition | |
| convolution_layer_args = (output_size, cnn_module_kernel, activation, | |
| cnn_module_norm, causal) | |
| self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3) | |
| self.encoders = torch.nn.ModuleList([ | |
| ConformerEncoderLayer( | |
| output_size, | |
| COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type]( | |
| *encoder_selfattn_layer_args), | |
| PositionwiseFeedForward(*positionwise_layer_args), | |
| PositionwiseFeedForward( | |
| *positionwise_layer_args) if macaron_style else None, | |
| ConvolutionModule( | |
| *convolution_layer_args) if use_cnn_module else None, | |
| dropout_rate, | |
| normalize_before, | |
| ) for _ in range(num_blocks) | |
| ]) | |
| self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2) | |
| self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer]( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size, | |
| positional_dropout_rate), | |
| ) | |
| self.up_encoders = torch.nn.ModuleList([ | |
| ConformerEncoderLayer( | |
| output_size, | |
| COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type]( | |
| *encoder_selfattn_layer_args), | |
| PositionwiseFeedForward(*positionwise_layer_args), | |
| PositionwiseFeedForward( | |
| *positionwise_layer_args) if macaron_style else None, | |
| ConvolutionModule( | |
| *convolution_layer_args) if use_cnn_module else None, | |
| dropout_rate, | |
| normalize_before, | |
| ) for _ in range(4) | |
| ]) | |
| def output_size(self) -> int: | |
| return self._output_size | |
| def forward( | |
| self, | |
| xs: torch.Tensor, | |
| xs_lens: torch.Tensor, | |
| decoding_chunk_size: int = 0, | |
| num_decoding_left_chunks: int = -1, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Embed positions in tensor. | |
| Args: | |
| xs: padded input tensor (B, T, D) | |
| xs_lens: input length (B) | |
| decoding_chunk_size: decoding chunk size for dynamic chunk | |
| 0: default for training, use random dynamic chunk. | |
| <0: for decoding, use full chunk. | |
| >0: for decoding, use fixed chunk size as set. | |
| num_decoding_left_chunks: number of left chunks, this is for decoding, | |
| the chunk size is decoding_chunk_size. | |
| >=0: use num_decoding_left_chunks | |
| <0: use all left chunks | |
| Returns: | |
| encoder output tensor xs, and subsampled masks | |
| xs: padded output tensor (B, T' ~= T/subsample_rate, D) | |
| masks: torch.Tensor batch padding mask after subsample | |
| (B, 1, T' ~= T/subsample_rate) | |
| NOTE(xcsong): | |
| We pass the `__call__` method of the modules instead of `forward` to the | |
| checkpointing API because `__call__` attaches all the hooks of the module. | |
| https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 | |
| """ | |
| T = xs.size(1) | |
| masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
| if self.global_cmvn is not None: | |
| xs = self.global_cmvn(xs) | |
| xs, pos_emb, masks = self.embed(xs, masks) | |
| mask_pad = masks # (B, 1, T/subsample_rate) | |
| chunk_masks = add_optional_chunk_mask(xs, masks, | |
| self.use_dynamic_chunk, | |
| self.use_dynamic_left_chunk, | |
| decoding_chunk_size, | |
| self.static_chunk_size, | |
| num_decoding_left_chunks) | |
| # lookahead + conformer encoder | |
| xs = self.pre_lookahead_layer(xs) | |
| xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) | |
| # upsample + conformer encoder | |
| xs = xs.transpose(1, 2).contiguous() | |
| xs, xs_lens = self.up_layer(xs, xs_lens) | |
| xs = xs.transpose(1, 2).contiguous() | |
| T = xs.size(1) | |
| masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
| xs, pos_emb, masks = self.up_embed(xs, masks) | |
| mask_pad = masks # (B, 1, T/subsample_rate) | |
| chunk_masks = add_optional_chunk_mask(xs, masks, | |
| self.use_dynamic_chunk, | |
| self.use_dynamic_left_chunk, | |
| decoding_chunk_size, | |
| self.static_chunk_size * self.up_layer.stride, | |
| num_decoding_left_chunks) | |
| xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad) | |
| if self.normalize_before: | |
| xs = self.after_norm(xs) | |
| # Here we assume the mask is not changed in encoder layers, so just | |
| # return the masks before encoder layers, and the masks will be used | |
| # for cross attention with decoder later | |
| return xs, masks | |
| def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, | |
| pos_emb: torch.Tensor, | |
| mask_pad: torch.Tensor) -> torch.Tensor: | |
| for layer in self.encoders: | |
| xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
| return xs | |
| def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, | |
| pos_emb: torch.Tensor, | |
| mask_pad: torch.Tensor) -> torch.Tensor: | |
| for layer in self.up_encoders: | |
| xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
| return xs | |