Spaces:
Runtime error
Runtime error
| # Copyright (c) 2020 Mobvoi Inc (Binbin Zhang) | |
| # 2024 Alibaba Inc (authors: Xiang Lyu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Modified from ESPnet(https://github.com/espnet/espnet) | |
| """Unility functions for Transformer.""" | |
| import random | |
| from typing import List | |
| import numpy as np | |
| import torch | |
| IGNORE_ID = -1 | |
| def pad_list(xs: List[torch.Tensor], pad_value: int): | |
| """Perform padding for the list of tensors. | |
| Args: | |
| xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)]. | |
| pad_value (float): Value for padding. | |
| Returns: | |
| Tensor: Padded tensor (B, Tmax, `*`). | |
| Examples: | |
| >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)] | |
| >>> x | |
| [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])] | |
| >>> pad_list(x, 0) | |
| tensor([[1., 1., 1., 1.], | |
| [1., 1., 0., 0.], | |
| [1., 0., 0., 0.]]) | |
| """ | |
| max_len = max([len(item) for item in xs]) | |
| batchs = len(xs) | |
| ndim = xs[0].ndim | |
| if ndim == 1: | |
| pad_res = torch.zeros(batchs, | |
| max_len, | |
| dtype=xs[0].dtype, | |
| device=xs[0].device) | |
| elif ndim == 2: | |
| pad_res = torch.zeros(batchs, | |
| max_len, | |
| xs[0].shape[1], | |
| dtype=xs[0].dtype, | |
| device=xs[0].device) | |
| elif ndim == 3: | |
| pad_res = torch.zeros(batchs, | |
| max_len, | |
| xs[0].shape[1], | |
| xs[0].shape[2], | |
| dtype=xs[0].dtype, | |
| device=xs[0].device) | |
| else: | |
| raise ValueError(f"Unsupported ndim: {ndim}") | |
| pad_res.fill_(pad_value) | |
| for i in range(batchs): | |
| pad_res[i, :len(xs[i])] = xs[i] | |
| return pad_res | |
| def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor, | |
| ignore_label: int) -> torch.Tensor: | |
| """Calculate accuracy. | |
| Args: | |
| pad_outputs (Tensor): Prediction tensors (B * Lmax, D). | |
| pad_targets (LongTensor): Target label tensors (B, Lmax). | |
| ignore_label (int): Ignore label id. | |
| Returns: | |
| torch.Tensor: Accuracy value (0.0 - 1.0). | |
| """ | |
| pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1), | |
| pad_outputs.size(1)).argmax(2) | |
| mask = pad_targets != ignore_label | |
| numerator = torch.sum( | |
| pad_pred.masked_select(mask) == pad_targets.masked_select(mask)) | |
| denominator = torch.sum(mask) | |
| return (numerator / denominator).detach() | |
| def get_padding(kernel_size, dilation=1): | |
| return int((kernel_size * dilation - dilation) / 2) | |
| def init_weights(m, mean=0.0, std=0.01): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| m.weight.data.normal_(mean, std) | |
| # Repetition Aware Sampling in VALL-E 2 | |
| def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1): | |
| top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k) | |
| rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item() | |
| if rep_num >= win_size * tau_r: | |
| top_ids = random_sampling(weighted_scores, decoded_tokens, sampling) | |
| return top_ids | |
| def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25): | |
| prob, indices = [], [] | |
| cum_prob = 0.0 | |
| sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True) | |
| for i in range(len(sorted_idx)): | |
| # sampling both top-p and numbers. | |
| if cum_prob < top_p and len(prob) < top_k: | |
| cum_prob += sorted_value[i] | |
| prob.append(sorted_value[i]) | |
| indices.append(sorted_idx[i]) | |
| else: | |
| break | |
| prob = torch.tensor(prob).to(weighted_scores) | |
| indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device) | |
| top_ids = indices[prob.multinomial(1, replacement=True)] | |
| return top_ids | |
| def random_sampling(weighted_scores, decoded_tokens, sampling): | |
| top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True) | |
| return top_ids | |
| def fade_in_out(fade_in_mel, fade_out_mel, window): | |
| device = fade_in_mel.device | |
| fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu() | |
| mel_overlap_len = int(window.shape[0] / 2) | |
| if fade_in_mel.device == torch.device('cpu'): | |
| fade_in_mel = fade_in_mel.clone() | |
| fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \ | |
| fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:] | |
| return fade_in_mel.to(device) | |
| def set_all_random_seed(seed): | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: | |
| assert mask.dtype == torch.bool | |
| assert dtype in [torch.float32, torch.bfloat16, torch.float16] | |
| mask = mask.to(dtype) | |
| # attention mask bias | |
| # NOTE(Mddct): torch.finfo jit issues | |
| # chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min | |
| mask = (1.0 - mask) * torch.finfo(dtype).min | |
| return mask |