Spaces:
Runtime error
Runtime error
| import torch | |
| class SigmoidScheduler: | |
| def __init__(self, start=-3, end=3, tau=1, clip_min=1e-9): | |
| self.start = start | |
| self.end = end | |
| self.tau = tau | |
| self.clip_min = clip_min | |
| self.v_start = torch.sigmoid(torch.tensor(self.start / self.tau)) | |
| self.v_end = torch.sigmoid(torch.tensor(self.end / self.tau)) | |
| def __call__(self, t): | |
| output = ( | |
| -torch.sigmoid((t * (self.end - self.start) + self.start) / self.tau) | |
| + self.v_end | |
| ) / (self.v_end - self.v_start) | |
| return torch.clamp(output, min=self.clip_min, max=1.0) | |
| def derivative(self, t): | |
| x = (t * (self.end - self.start) + self.start) / self.tau | |
| sigmoid_x = torch.sigmoid(x) | |
| # Chain rule: d/dt of original function | |
| return ( | |
| -(self.end - self.start) | |
| * sigmoid_x | |
| * (1 - sigmoid_x) | |
| / (self.tau * (self.v_end - self.v_start)) | |
| ) | |
| def alpha(self, t): | |
| return -self.derivative(t) / (1e-6 + self.__call__(t)) | |
| class LinearScheduler: | |
| def __init__(self, start=1, end=0, clip_min=1e-9): | |
| self.start = start | |
| self.end = end | |
| self.clip_min = clip_min | |
| def __call__(self, t): | |
| output = (self.end - self.start) * t + self.start | |
| return torch.clamp(output, min=self.clip_min, max=1.0) | |
| def derivative(self, t): | |
| return torch.tensor(self.end - self.start).to(t.device) | |
| def alpha(self, t): | |
| return -self.derivative(t) / (1e-6 + self.__call__(t)) | |
| class CosineScheduler: | |
| def __init__( | |
| self, | |
| start: float = 1, | |
| end: float = 0, | |
| tau: float = 1.0, | |
| clip_min: float = 1e-9, | |
| ): | |
| self.start = start | |
| self.end = end | |
| self.tau = tau | |
| self.clip_min = clip_min | |
| self.v_start = torch.cos(torch.tensor(self.start) * torch.pi / 2) ** ( | |
| 2 * self.tau | |
| ) | |
| self.v_end = torch.cos(torch.tensor(self.end) * torch.pi / 2) ** (2 * self.tau) | |
| def __call__(self, t: float) -> float: | |
| output = ( | |
| torch.cos((t * (self.end - self.start) + self.start) * torch.pi / 2) | |
| ** (2 * self.tau) | |
| - self.v_end | |
| ) / (self.v_start - self.v_end) | |
| return torch.clamp(output, min=self.clip_min, max=1.0) | |
| def derivative(self, t: float) -> float: | |
| x = (t * (self.end - self.start) + self.start) * torch.pi / 2 | |
| cos_x = torch.cos(x) | |
| # Chain rule: d/dt of original function | |
| return ( | |
| -2 | |
| * self.tau | |
| * (self.end - self.start) | |
| * torch.pi | |
| / 2 | |
| * cos_x | |
| * (cos_x ** (2 * self.tau - 1)) | |
| * torch.sin(x) | |
| / (self.v_start - self.v_end) | |
| ) | |
| class CosineSchedulerSimple: | |
| def __init__(self, ns: float = 0.0002, ds: float = 0.00025): | |
| self.ns = ns | |
| self.ds = ds | |
| def __call__(self, t: float) -> float: | |
| return torch.cos(((t + self.ns) / (1 + self.ds)) * torch.pi / 2) ** 2 | |
| def derivative(self, t: float) -> float: | |
| x = ((t + self.ns) / (1 + self.ds)) * torch.pi / 2 | |
| return -torch.pi * torch.cos(x) * torch.sin(x) / (1 + self.ds) | |