Spaces:
Runtime error
Runtime error
| """SAMPLING ONLY.""" | |
| import numpy as np | |
| import torch | |
| from einops import rearrange | |
| from tqdm import tqdm | |
| from core.common import noise_like | |
| from core.models.utils_diffusion import ( | |
| make_ddim_sampling_parameters, | |
| make_ddim_time_steps, | |
| rescale_noise_cfg, | |
| ) | |
| class DDIMSampler(object): | |
| def __init__(self, model, schedule="linear", **kwargs): | |
| super().__init__() | |
| self.model = model | |
| self.ddpm_num_time_steps = model.num_time_steps | |
| self.schedule = schedule | |
| self.counter = 0 | |
| def register_buffer(self, name, attr): | |
| if type(attr) == torch.Tensor: | |
| if attr.device != torch.device("cuda"): | |
| attr = attr.to(torch.device("cuda")) | |
| setattr(self, name, attr) | |
| def make_schedule( | |
| self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True | |
| ): | |
| self.ddim_time_steps = make_ddim_time_steps( | |
| ddim_discr_method=ddim_discretize, | |
| num_ddim_time_steps=ddim_num_steps, | |
| num_ddpm_time_steps=self.ddpm_num_time_steps, | |
| verbose=verbose, | |
| ) | |
| alphas_cumprod = self.model.alphas_cumprod | |
| assert ( | |
| alphas_cumprod.shape[0] == self.ddpm_num_time_steps | |
| ), "alphas have to be defined for each timestep" | |
| def to_torch(x): | |
| return x.clone().detach().to(torch.float32).to(self.model.device) | |
| if self.model.use_dynamic_rescale: | |
| self.ddim_scale_arr = self.model.scale_arr[self.ddim_time_steps] | |
| self.ddim_scale_arr_prev = torch.cat( | |
| [self.ddim_scale_arr[0:1], self.ddim_scale_arr[:-1]] | |
| ) | |
| self.register_buffer("betas", to_torch(self.model.betas)) | |
| self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) | |
| self.register_buffer( | |
| "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev) | |
| ) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.register_buffer( | |
| "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())) | |
| ) | |
| self.register_buffer( | |
| "sqrt_one_minus_alphas_cumprod", | |
| to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), | |
| ) | |
| self.register_buffer( | |
| "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) | |
| ) | |
| self.register_buffer( | |
| "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) | |
| ) | |
| self.register_buffer( | |
| "sqrt_recipm1_alphas_cumprod", | |
| to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), | |
| ) | |
| # ddim sampling parameters | |
| ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( | |
| alphacums=alphas_cumprod.cpu(), | |
| ddim_time_steps=self.ddim_time_steps, | |
| eta=ddim_eta, | |
| verbose=verbose, | |
| ) | |
| self.register_buffer("ddim_sigmas", ddim_sigmas) | |
| self.register_buffer("ddim_alphas", ddim_alphas) | |
| self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) | |
| self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) | |
| sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( | |
| (1 - self.alphas_cumprod_prev) | |
| / (1 - self.alphas_cumprod) | |
| * (1 - self.alphas_cumprod / self.alphas_cumprod_prev) | |
| ) | |
| self.register_buffer( | |
| "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps | |
| ) | |
| def sample( | |
| self, | |
| S, | |
| batch_size, | |
| shape, | |
| conditioning=None, | |
| callback=None, | |
| img_callback=None, | |
| quantize_x0=False, | |
| eta=0.0, | |
| mask=None, | |
| x0=None, | |
| temperature=1.0, | |
| noise_dropout=0.0, | |
| score_corrector=None, | |
| corrector_kwargs=None, | |
| verbose=True, | |
| schedule_verbose=False, | |
| x_T=None, | |
| log_every_t=100, | |
| unconditional_guidance_scale=1.0, | |
| unconditional_conditioning=None, | |
| unconditional_guidance_scale_extra=1.0, | |
| unconditional_conditioning_extra=None, | |
| with_extra_returned_data=False, | |
| **kwargs, | |
| ): | |
| # check condition bs | |
| if conditioning is not None: | |
| if isinstance(conditioning, dict): | |
| try: | |
| cbs = conditioning[list(conditioning.keys())[0]].shape[0] | |
| except: | |
| cbs = conditioning[list(conditioning.keys())[0]][0].shape[0] | |
| if cbs != batch_size: | |
| print( | |
| f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" | |
| ) | |
| else: | |
| if conditioning.shape[0] != batch_size: | |
| print( | |
| f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" | |
| ) | |
| self.skip_step = self.ddpm_num_time_steps // S | |
| discr_method = ( | |
| "uniform_trailing" if self.model.rescale_betas_zero_snr else "uniform" | |
| ) | |
| self.make_schedule( | |
| ddim_num_steps=S, | |
| ddim_discretize=discr_method, | |
| ddim_eta=eta, | |
| verbose=schedule_verbose, | |
| ) | |
| # make shape | |
| if len(shape) == 3: | |
| C, H, W = shape | |
| size = (batch_size, C, H, W) | |
| elif len(shape) == 4: | |
| T, C, H, W = shape | |
| size = (batch_size, T, C, H, W) | |
| else: | |
| assert False, f"Invalid shape: {shape}." | |
| out = self.ddim_sampling( | |
| conditioning, | |
| size, | |
| callback=callback, | |
| img_callback=img_callback, | |
| quantize_denoised=quantize_x0, | |
| mask=mask, | |
| x0=x0, | |
| ddim_use_original_steps=False, | |
| noise_dropout=noise_dropout, | |
| temperature=temperature, | |
| score_corrector=score_corrector, | |
| corrector_kwargs=corrector_kwargs, | |
| x_T=x_T, | |
| log_every_t=log_every_t, | |
| unconditional_guidance_scale=unconditional_guidance_scale, | |
| unconditional_conditioning=unconditional_conditioning, | |
| unconditional_guidance_scale_extra=unconditional_guidance_scale_extra, | |
| unconditional_conditioning_extra=unconditional_conditioning_extra, | |
| verbose=verbose, | |
| with_extra_returned_data=with_extra_returned_data, | |
| **kwargs, | |
| ) | |
| if with_extra_returned_data: | |
| samples, intermediates, extra_returned_data = out | |
| return samples, intermediates, extra_returned_data | |
| else: | |
| samples, intermediates = out | |
| return samples, intermediates | |
| def ddim_sampling( | |
| self, | |
| cond, | |
| shape, | |
| x_T=None, | |
| ddim_use_original_steps=False, | |
| callback=None, | |
| time_steps=None, | |
| quantize_denoised=False, | |
| mask=None, | |
| x0=None, | |
| img_callback=None, | |
| log_every_t=100, | |
| temperature=1.0, | |
| noise_dropout=0.0, | |
| score_corrector=None, | |
| corrector_kwargs=None, | |
| unconditional_guidance_scale=1.0, | |
| unconditional_conditioning=None, | |
| unconditional_guidance_scale_extra=1.0, | |
| unconditional_conditioning_extra=None, | |
| verbose=True, | |
| with_extra_returned_data=False, | |
| **kwargs, | |
| ): | |
| device = self.model.betas.device | |
| b = shape[0] | |
| if x_T is None: | |
| img = torch.randn(shape, device=device, dtype=self.model.dtype) | |
| if self.model.bd_noise: | |
| noise_decor = self.model.bd(img) | |
| noise_decor = (noise_decor - noise_decor.mean()) / ( | |
| noise_decor.std() + 1e-5 | |
| ) | |
| noise_f = noise_decor[:, :, 0:1, :, :] | |
| noise = ( | |
| np.sqrt(self.model.bd_ratio) * noise_decor[:, :, 1:] | |
| + np.sqrt(1 - self.model.bd_ratio) * noise_f | |
| ) | |
| img = torch.cat([noise_f, noise], dim=2) | |
| else: | |
| img = x_T | |
| if time_steps is None: | |
| time_steps = ( | |
| self.ddpm_num_time_steps | |
| if ddim_use_original_steps | |
| else self.ddim_time_steps | |
| ) | |
| elif time_steps is not None and not ddim_use_original_steps: | |
| subset_end = ( | |
| int( | |
| min(time_steps / self.ddim_time_steps.shape[0], 1) | |
| * self.ddim_time_steps.shape[0] | |
| ) | |
| - 1 | |
| ) | |
| time_steps = self.ddim_time_steps[:subset_end] | |
| intermediates = {"x_inter": [img], "pred_x0": [img]} | |
| time_range = ( | |
| reversed(range(0, time_steps)) | |
| if ddim_use_original_steps | |
| else np.flip(time_steps) | |
| ) | |
| total_steps = time_steps if ddim_use_original_steps else time_steps.shape[0] | |
| if verbose: | |
| iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps) | |
| else: | |
| iterator = time_range | |
| # Sampling Loop | |
| for i, step in enumerate(iterator): | |
| print(f"Sample: i={i}, step={step}.") | |
| index = total_steps - i - 1 | |
| ts = torch.full((b,), step, device=device, dtype=torch.long) | |
| print("ts=", ts) | |
| # use mask to blend noised original latent (img_orig) & new sampled latent (img) | |
| if mask is not None: | |
| assert x0 is not None | |
| img_orig = x0 | |
| # keep original & modify use img | |
| img = img_orig * mask + (1.0 - mask) * img | |
| outs = self.p_sample_ddim( | |
| img, | |
| cond, | |
| ts, | |
| index=index, | |
| use_original_steps=ddim_use_original_steps, | |
| quantize_denoised=quantize_denoised, | |
| temperature=temperature, | |
| noise_dropout=noise_dropout, | |
| score_corrector=score_corrector, | |
| corrector_kwargs=corrector_kwargs, | |
| unconditional_guidance_scale=unconditional_guidance_scale, | |
| unconditional_conditioning=unconditional_conditioning, | |
| unconditional_guidance_scale_extra=unconditional_guidance_scale_extra, | |
| unconditional_conditioning_extra=unconditional_conditioning_extra, | |
| with_extra_returned_data=with_extra_returned_data, | |
| **kwargs, | |
| ) | |
| if with_extra_returned_data: | |
| img, pred_x0, extra_returned_data = outs | |
| else: | |
| img, pred_x0 = outs | |
| if callback: | |
| callback(i) | |
| if img_callback: | |
| img_callback(pred_x0, i) | |
| # log_every_t = 1 | |
| if index % log_every_t == 0 or index == total_steps - 1: | |
| intermediates["x_inter"].append(img) | |
| intermediates["pred_x0"].append(pred_x0) | |
| # intermediates['extra_returned_data'].append(extra_returned_data) | |
| if with_extra_returned_data: | |
| return img, intermediates, extra_returned_data | |
| return img, intermediates | |
| def batch_time_transpose( | |
| self, batch_time_tensor, num_target_views, num_condition_views | |
| ): | |
| # Input: N*N; N = T+C | |
| assert num_target_views + num_condition_views == batch_time_tensor.shape[1] | |
| target_tensor = batch_time_tensor[:, :num_target_views, ...] # T*T | |
| condition_tensor = batch_time_tensor[:, num_target_views:, ...] # N*C | |
| target_tensor = target_tensor.transpose(0, 1) # T*T | |
| return torch.concat([target_tensor, condition_tensor], dim=1) | |
| def ddim_batch_shard_step( | |
| self, | |
| pred_x0_post_process_function, | |
| pred_x0_post_process_function_kwargs, | |
| cond, | |
| corrector_kwargs, | |
| ddim_use_original_steps, | |
| device, | |
| img, | |
| index, | |
| kwargs, | |
| noise_dropout, | |
| quantize_denoised, | |
| score_corrector, | |
| step, | |
| temperature, | |
| with_extra_returned_data, | |
| ): | |
| img_list = [] | |
| pred_x0_list = [] | |
| shard_step = 5 | |
| shard_start = 0 | |
| while shard_start < img.shape[0]: | |
| shard_end = shard_start + shard_step | |
| if shard_start >= img.shape[0]: | |
| break | |
| if shard_end > img.shape[0]: | |
| shard_end = img.shape[0] | |
| print( | |
| f"Sampling Batch Shard: From #{shard_start} to #{shard_end}. Total: {img.shape[0]}." | |
| ) | |
| sub_img = img[shard_start:shard_end] | |
| sub_cond = { | |
| "combined_condition": cond["combined_condition"][shard_start:shard_end], | |
| "c_crossattn": [ | |
| cond["c_crossattn"][0][0:1].expand(shard_end - shard_start, -1, -1) | |
| ], | |
| } | |
| ts = torch.full((sub_img.shape[0],), step, device=device, dtype=torch.long) | |
| _img, _pred_x0 = self.p_sample_ddim( | |
| sub_img, | |
| sub_cond, | |
| ts, | |
| index=index, | |
| use_original_steps=ddim_use_original_steps, | |
| quantize_denoised=quantize_denoised, | |
| temperature=temperature, | |
| noise_dropout=noise_dropout, | |
| score_corrector=score_corrector, | |
| corrector_kwargs=corrector_kwargs, | |
| unconditional_guidance_scale=1.0, | |
| unconditional_conditioning=None, | |
| unconditional_guidance_scale_extra=1.0, | |
| unconditional_conditioning_extra=None, | |
| pred_x0_post_process_function=pred_x0_post_process_function, | |
| pred_x0_post_process_function_kwargs=pred_x0_post_process_function_kwargs, | |
| with_extra_returned_data=with_extra_returned_data, | |
| **kwargs, | |
| ) | |
| img_list.append(_img) | |
| pred_x0_list.append(_pred_x0) | |
| shard_start += shard_step | |
| img = torch.concat(img_list, dim=0) | |
| pred_x0 = torch.concat(pred_x0_list, dim=0) | |
| return img, pred_x0 | |
| def p_sample_ddim( | |
| self, | |
| x, | |
| c, | |
| t, | |
| index, | |
| repeat_noise=False, | |
| use_original_steps=False, | |
| quantize_denoised=False, | |
| temperature=1.0, | |
| noise_dropout=0.0, | |
| score_corrector=None, | |
| corrector_kwargs=None, | |
| unconditional_guidance_scale=1.0, | |
| unconditional_conditioning=None, | |
| unconditional_guidance_scale_extra=1.0, | |
| unconditional_conditioning_extra=None, | |
| with_extra_returned_data=False, | |
| **kwargs, | |
| ): | |
| b, *_, device = *x.shape, x.device | |
| if x.dim() == 5: | |
| is_video = True | |
| else: | |
| is_video = False | |
| extra_returned_data = None | |
| if unconditional_conditioning is None or unconditional_guidance_scale == 1.0: | |
| e_t_cfg = self.model.apply_model(x, t, c, **kwargs) # unet denoiser | |
| if isinstance(e_t_cfg, tuple): | |
| e_t_cfg = e_t_cfg[0] | |
| extra_returned_data = e_t_cfg[1:] | |
| else: | |
| # with unconditional condition | |
| if isinstance(c, torch.Tensor) or isinstance(c, dict): | |
| e_t = self.model.apply_model(x, t, c, **kwargs) | |
| e_t_uncond = self.model.apply_model( | |
| x, t, unconditional_conditioning, **kwargs | |
| ) | |
| if ( | |
| unconditional_guidance_scale_extra != 1.0 | |
| and unconditional_conditioning_extra is not None | |
| ): | |
| print(f"Using extra CFG: {unconditional_guidance_scale_extra}...") | |
| e_t_uncond_extra = self.model.apply_model( | |
| x, t, unconditional_conditioning_extra, **kwargs | |
| ) | |
| else: | |
| e_t_uncond_extra = None | |
| else: | |
| raise NotImplementedError | |
| if isinstance(e_t, tuple): | |
| e_t = e_t[0] | |
| extra_returned_data = e_t[1:] | |
| if isinstance(e_t_uncond, tuple): | |
| e_t_uncond = e_t_uncond[0] | |
| if isinstance(e_t_uncond_extra, tuple): | |
| e_t_uncond_extra = e_t_uncond_extra[0] | |
| # text cfg | |
| if ( | |
| unconditional_guidance_scale_extra != 1.0 | |
| and unconditional_conditioning_extra is not None | |
| ): | |
| e_t_cfg = ( | |
| e_t_uncond | |
| + unconditional_guidance_scale * (e_t - e_t_uncond) | |
| + unconditional_guidance_scale_extra * (e_t - e_t_uncond_extra) | |
| ) | |
| else: | |
| e_t_cfg = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) | |
| if self.model.rescale_betas_zero_snr: | |
| e_t_cfg = rescale_noise_cfg(e_t_cfg, e_t, guidance_rescale=0.7) | |
| if self.model.parameterization == "v": | |
| e_t = self.model.predict_eps_from_z_and_v(x, t, e_t_cfg) | |
| else: | |
| e_t = e_t_cfg | |
| if score_corrector is not None: | |
| assert self.model.parameterization == "eps", "not implemented" | |
| e_t = score_corrector.modify_score( | |
| self.model, e_t, x, t, c, **corrector_kwargs | |
| ) | |
| alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas | |
| alphas_prev = ( | |
| self.model.alphas_cumprod_prev | |
| if use_original_steps | |
| else self.ddim_alphas_prev | |
| ) | |
| sqrt_one_minus_alphas = ( | |
| self.model.sqrt_one_minus_alphas_cumprod | |
| if use_original_steps | |
| else self.ddim_sqrt_one_minus_alphas | |
| ) | |
| sigmas = ( | |
| self.model.ddim_sigmas_for_original_num_steps | |
| if use_original_steps | |
| else self.ddim_sigmas | |
| ) | |
| # select parameters corresponding to the currently considered timestep | |
| if is_video: | |
| size = (b, 1, 1, 1, 1) | |
| else: | |
| size = (b, 1, 1, 1) | |
| a_t = torch.full(size, alphas[index], device=device) | |
| a_prev = torch.full(size, alphas_prev[index], device=device) | |
| sigma_t = torch.full(size, sigmas[index], device=device) | |
| sqrt_one_minus_at = torch.full( | |
| size, sqrt_one_minus_alphas[index], device=device | |
| ) | |
| # current prediction for x_0 | |
| if self.model.parameterization != "v": | |
| pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() | |
| else: | |
| pred_x0 = self.model.predict_start_from_z_and_v(x, t, e_t_cfg) | |
| if self.model.use_dynamic_rescale: | |
| scale_t = torch.full(size, self.ddim_scale_arr[index], device=device) | |
| prev_scale_t = torch.full( | |
| size, self.ddim_scale_arr_prev[index], device=device | |
| ) | |
| rescale = prev_scale_t / scale_t | |
| pred_x0 *= rescale | |
| if quantize_denoised: | |
| pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) | |
| dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t | |
| noise = noise_like(x.shape, device, repeat_noise) | |
| if self.model.bd_noise: | |
| noise_decor = self.model.bd(noise) | |
| noise_decor = (noise_decor - noise_decor.mean()) / ( | |
| noise_decor.std() + 1e-5 | |
| ) | |
| noise_f = noise_decor[:, :, 0:1, :, :] | |
| noise = ( | |
| np.sqrt(self.model.bd_ratio) * noise_decor[:, :, 1:] | |
| + np.sqrt(1 - self.model.bd_ratio) * noise_f | |
| ) | |
| noise = torch.cat([noise_f, noise], dim=2) | |
| noise = sigma_t * noise * temperature | |
| if noise_dropout > 0.0: | |
| noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
| x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise | |
| if with_extra_returned_data: | |
| return x_prev, pred_x0, extra_returned_data | |
| return x_prev, pred_x0 | |