Spaces:
Runtime error
Runtime error
| """SAMPLING ONLY.""" | |
| import torch | |
| from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver | |
| MODEL_TYPES = {"eps": "noise", "v": "v"} | |
| class DPMSolverSampler(object): | |
| def __init__(self, model, **kwargs): | |
| super().__init__() | |
| self.model = model | |
| def to_torch(x): | |
| return x.clone().detach().to(torch.float32).to(model.device) | |
| self.register_buffer("alphas_cumprod", to_torch(model.alphas_cumprod)) | |
| def register_buffer(self, name, attr): | |
| if type(attr) == torch.Tensor: | |
| if attr.device != torch.device("cuda"): | |
| attr = attr.to(torch.device("cuda")) | |
| setattr(self, name, attr) | |
| def sample( | |
| self, | |
| S, | |
| batch_size, | |
| shape, | |
| conditioning=None, | |
| x_T=None, | |
| unconditional_guidance_scale=1.0, | |
| unconditional_conditioning=None, | |
| # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... | |
| **kwargs, | |
| ): | |
| if conditioning is not None: | |
| if isinstance(conditioning, dict): | |
| try: | |
| cbs = conditioning[list(conditioning.keys())[0]].shape[0] | |
| except: | |
| cbs = conditioning[list(conditioning.keys())[0]][0].shape[0] | |
| if cbs != batch_size: | |
| print( | |
| f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" | |
| ) | |
| else: | |
| if conditioning.shape[0] != batch_size: | |
| print( | |
| f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" | |
| ) | |
| # sampling | |
| T, C, H, W = shape | |
| size = (batch_size, T, C, H, W) | |
| print(f"Data shape for DPM-Solver sampling is {size}, sampling steps {S}") | |
| device = self.model.betas.device | |
| if x_T is None: | |
| img = torch.randn(size, device=device) | |
| else: | |
| img = x_T | |
| ns = NoiseScheduleVP("discrete", alphas_cumprod=self.alphas_cumprod) | |
| model_fn = model_wrapper( | |
| lambda x, t, c: self.model.apply_model(x, t, c), | |
| ns, | |
| model_type=MODEL_TYPES[self.model.parameterization], | |
| guidance_type="classifier-free", | |
| condition=conditioning, | |
| unconditional_condition=unconditional_conditioning, | |
| guidance_scale=unconditional_guidance_scale, | |
| ) | |
| dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False) | |
| x = dpm_solver.sample( | |
| img, | |
| steps=S, | |
| skip_type="time_uniform", | |
| method="multistep", | |
| order=2, | |
| lower_order_final=True, | |
| ) | |
| return x.to(device), None | |