Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| from collections import OrderedDict | |
| from extralibs.cond_api import ExtraCondition | |
| from core.modules.x_transformer import FixedPositionalEmbedding | |
| from core.basics import zero_module, conv_nd, avg_pool_nd | |
| class Downsample(nn.Module): | |
| """ | |
| A downsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| downsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| stride = 2 if dims != 3 else (1, 2, 2) | |
| if use_conv: | |
| self.op = conv_nd( | |
| dims, | |
| self.channels, | |
| self.out_channels, | |
| 3, | |
| stride=stride, | |
| padding=padding, | |
| ) | |
| else: | |
| assert self.channels == self.out_channels | |
| self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| return self.op(x) | |
| class ResnetBlock(nn.Module): | |
| def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): | |
| super().__init__() | |
| ps = ksize // 2 | |
| if in_c != out_c or sk == False: | |
| self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) | |
| else: | |
| self.in_conv = None | |
| self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) | |
| self.act = nn.ReLU() | |
| self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) | |
| if sk == False: | |
| self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) | |
| else: | |
| self.skep = None | |
| self.down = down | |
| if self.down == True: | |
| self.down_opt = Downsample(in_c, use_conv=use_conv) | |
| def forward(self, x): | |
| if self.down == True: | |
| x = self.down_opt(x) | |
| if self.in_conv is not None: | |
| x = self.in_conv(x) | |
| h = self.block1(x) | |
| h = self.act(h) | |
| h = self.block2(h) | |
| if self.skep is not None: | |
| return h + self.skep(x) | |
| else: | |
| return h + x | |
| class Adapter(nn.Module): | |
| def __init__( | |
| self, | |
| channels=[320, 640, 1280, 1280], | |
| nums_rb=3, | |
| cin=64, | |
| ksize=3, | |
| sk=True, | |
| use_conv=True, | |
| stage_downscale=True, | |
| use_identity=False, | |
| ): | |
| super(Adapter, self).__init__() | |
| if use_identity: | |
| self.inlayer = nn.Identity() | |
| else: | |
| self.inlayer = nn.PixelUnshuffle(8) | |
| self.channels = channels | |
| self.nums_rb = nums_rb | |
| self.body = [] | |
| for i in range(len(channels)): | |
| for j in range(nums_rb): | |
| if (i != 0) and (j == 0): | |
| self.body.append( | |
| ResnetBlock( | |
| channels[i - 1], | |
| channels[i], | |
| down=stage_downscale, | |
| ksize=ksize, | |
| sk=sk, | |
| use_conv=use_conv, | |
| ) | |
| ) | |
| else: | |
| self.body.append( | |
| ResnetBlock( | |
| channels[i], | |
| channels[i], | |
| down=False, | |
| ksize=ksize, | |
| sk=sk, | |
| use_conv=use_conv, | |
| ) | |
| ) | |
| self.body = nn.ModuleList(self.body) | |
| self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) | |
| def forward(self, x): | |
| # unshuffle | |
| x = self.inlayer(x) | |
| # extract features | |
| features = [] | |
| x = self.conv_in(x) | |
| for i in range(len(self.channels)): | |
| for j in range(self.nums_rb): | |
| idx = i * self.nums_rb + j | |
| x = self.body[idx](x) | |
| features.append(x) | |
| return features | |
| class PositionNet(nn.Module): | |
| def __init__(self, input_size=(40, 64), cin=4, dim=512, out_dim=1024): | |
| super().__init__() | |
| self.input_size = input_size | |
| self.out_dim = out_dim | |
| self.down_factor = 8 # determined by the convnext backbone | |
| feature_dim = dim | |
| self.backbone = Adapter( | |
| channels=[64, 128, 256, feature_dim], | |
| nums_rb=2, | |
| cin=cin, | |
| stage_downscale=True, | |
| use_identity=True, | |
| ) | |
| self.num_tokens = (self.input_size[0] // self.down_factor) * ( | |
| self.input_size[1] // self.down_factor | |
| ) | |
| self.pos_embedding = nn.Parameter( | |
| torch.empty(1, self.num_tokens, feature_dim).normal_(std=0.02) | |
| ) # from BERT | |
| self.linears = nn.Sequential( | |
| nn.Linear(feature_dim, 512), | |
| nn.SiLU(), | |
| nn.Linear(512, 512), | |
| nn.SiLU(), | |
| nn.Linear(512, out_dim), | |
| ) | |
| # self.null_feature = torch.nn.Parameter(torch.zeros([feature_dim])) | |
| def forward(self, x, mask=None): | |
| B = x.shape[0] | |
| # token from edge map | |
| # x = torch.nn.functional.interpolate(x, self.input_size) | |
| feature = self.backbone(x)[-1] | |
| objs = feature.reshape(B, -1, self.num_tokens) | |
| objs = objs.permute(0, 2, 1) # N*Num_tokens*dim | |
| """ | |
| # expand null token | |
| null_objs = self.null_feature.view(1,1,-1) | |
| null_objs = null_objs.repeat(B,self.num_tokens,1) | |
| # mask replacing | |
| mask = mask.view(-1,1,1) | |
| objs = objs*mask + null_objs*(1-mask) | |
| """ | |
| # add pos | |
| objs = objs + self.pos_embedding | |
| # fuse them | |
| objs = self.linears(objs) | |
| assert objs.shape == torch.Size([B, self.num_tokens, self.out_dim]) | |
| return objs | |
| class PositionNet2(nn.Module): | |
| def __init__(self, input_size=(40, 64), cin=4, dim=320, out_dim=1024): | |
| super().__init__() | |
| self.input_size = input_size | |
| self.out_dim = out_dim | |
| self.down_factor = 8 # determined by the convnext backbone | |
| self.dim = dim | |
| self.backbone = Adapter( | |
| channels=[dim, dim, dim, dim], | |
| nums_rb=2, | |
| cin=cin, | |
| stage_downscale=True, | |
| use_identity=True, | |
| ) | |
| self.pos_embedding = FixedPositionalEmbedding(dim=self.dim) | |
| self.linears = nn.Sequential( | |
| nn.Linear(dim, 512), | |
| nn.SiLU(), | |
| nn.Linear(512, 512), | |
| nn.SiLU(), | |
| nn.Linear(512, out_dim), | |
| ) | |
| def forward(self, x, mask=None): | |
| B = x.shape[0] | |
| features = self.backbone(x) | |
| token_lists = [] | |
| for feature in features: | |
| objs = feature.reshape(B, self.dim, -1) | |
| objs = objs.permute(0, 2, 1) # N*Num_tokens*dim | |
| # add pos | |
| objs = objs + self.pos_embedding(objs) | |
| # fuse them | |
| objs = self.linears(objs) | |
| token_lists.append(objs) | |
| return token_lists | |
| class LayerNorm(nn.LayerNorm): | |
| """Subclass torch's LayerNorm to handle fp16.""" | |
| def forward(self, x: torch.Tensor): | |
| orig_type = x.dtype | |
| ret = super().forward(x.type(torch.float32)) | |
| return ret.type(orig_type) | |
| class QuickGELU(nn.Module): | |
| def forward(self, x: torch.Tensor): | |
| return x * torch.sigmoid(1.702 * x) | |
| class ResidualAttentionBlock(nn.Module): | |
| def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): | |
| super().__init__() | |
| self.attn = nn.MultiheadAttention(d_model, n_head) | |
| self.ln_1 = LayerNorm(d_model) | |
| self.mlp = nn.Sequential( | |
| OrderedDict( | |
| [ | |
| ("c_fc", nn.Linear(d_model, d_model * 4)), | |
| ("gelu", QuickGELU()), | |
| ("c_proj", nn.Linear(d_model * 4, d_model)), | |
| ] | |
| ) | |
| ) | |
| self.ln_2 = LayerNorm(d_model) | |
| self.attn_mask = attn_mask | |
| def attention(self, x: torch.Tensor): | |
| self.attn_mask = ( | |
| self.attn_mask.to(dtype=x.dtype, device=x.device) | |
| if self.attn_mask is not None | |
| else None | |
| ) | |
| return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
| def forward(self, x: torch.Tensor): | |
| x = x + self.attention(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class StyleAdapter(nn.Module): | |
| def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4): | |
| super().__init__() | |
| scale = width**-0.5 | |
| self.transformer_layes = nn.Sequential( | |
| *[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)] | |
| ) | |
| self.num_token = num_token | |
| self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale) | |
| self.ln_post = LayerNorm(width) | |
| self.ln_pre = LayerNorm(width) | |
| self.proj = nn.Parameter(scale * torch.randn(width, context_dim)) | |
| def forward(self, x): | |
| # x shape [N, HW+1, C] | |
| style_embedding = self.style_embedding + torch.zeros( | |
| (x.shape[0], self.num_token, self.style_embedding.shape[-1]), | |
| device=x.device, | |
| ) | |
| x = torch.cat([x, style_embedding], dim=1) | |
| x = self.ln_pre(x) | |
| x = x.permute(1, 0, 2) # NLD -> LND | |
| x = self.transformer_layes(x) | |
| x = x.permute(1, 0, 2) # LND -> NLD | |
| x = self.ln_post(x[:, -self.num_token :, :]) | |
| x = x @ self.proj | |
| return x | |
| class ResnetBlock_light(nn.Module): | |
| def __init__(self, in_c): | |
| super().__init__() | |
| self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1) | |
| self.act = nn.ReLU() | |
| self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1) | |
| def forward(self, x): | |
| h = self.block1(x) | |
| h = self.act(h) | |
| h = self.block2(h) | |
| return h + x | |
| class extractor(nn.Module): | |
| def __init__(self, in_c, inter_c, out_c, nums_rb, down=False): | |
| super().__init__() | |
| self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0) | |
| self.body = [] | |
| for _ in range(nums_rb): | |
| self.body.append(ResnetBlock_light(inter_c)) | |
| self.body = nn.Sequential(*self.body) | |
| self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0) | |
| self.down = down | |
| if self.down == True: | |
| self.down_opt = Downsample(in_c, use_conv=False) | |
| def forward(self, x): | |
| if self.down == True: | |
| x = self.down_opt(x) | |
| x = self.in_conv(x) | |
| x = self.body(x) | |
| x = self.out_conv(x) | |
| return x | |
| class Adapter_light(nn.Module): | |
| def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64): | |
| super(Adapter_light, self).__init__() | |
| self.unshuffle = nn.PixelUnshuffle(8) | |
| self.channels = channels | |
| self.nums_rb = nums_rb | |
| self.body = [] | |
| for i in range(len(channels)): | |
| if i == 0: | |
| self.body.append( | |
| extractor( | |
| in_c=cin, | |
| inter_c=channels[i] // 4, | |
| out_c=channels[i], | |
| nums_rb=nums_rb, | |
| down=False, | |
| ) | |
| ) | |
| else: | |
| self.body.append( | |
| extractor( | |
| in_c=channels[i - 1], | |
| inter_c=channels[i] // 4, | |
| out_c=channels[i], | |
| nums_rb=nums_rb, | |
| down=True, | |
| ) | |
| ) | |
| self.body = nn.ModuleList(self.body) | |
| def forward(self, x): | |
| # unshuffle | |
| x = self.unshuffle(x) | |
| # extract features | |
| features = [] | |
| for i in range(len(self.channels)): | |
| x = self.body[i](x) | |
| features.append(x) | |
| return features | |
| class CoAdapterFuser(nn.Module): | |
| def __init__( | |
| self, unet_channels=[320, 640, 1280, 1280], width=768, num_head=8, n_layes=3 | |
| ): | |
| super(CoAdapterFuser, self).__init__() | |
| scale = width**0.5 | |
| self.task_embedding = nn.Parameter(scale * torch.randn(16, width)) | |
| self.positional_embedding = nn.Parameter( | |
| scale * torch.randn(len(unet_channels), width) | |
| ) | |
| self.spatial_feat_mapping = nn.ModuleList() | |
| for ch in unet_channels: | |
| self.spatial_feat_mapping.append( | |
| nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(ch, width), | |
| ) | |
| ) | |
| self.transformer_layes = nn.Sequential( | |
| *[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)] | |
| ) | |
| self.ln_post = LayerNorm(width) | |
| self.ln_pre = LayerNorm(width) | |
| self.spatial_ch_projs = nn.ModuleList() | |
| for ch in unet_channels: | |
| self.spatial_ch_projs.append(zero_module(nn.Linear(width, ch))) | |
| self.seq_proj = nn.Parameter(torch.zeros(width, width)) | |
| def forward(self, features): | |
| if len(features) == 0: | |
| return None, None | |
| inputs = [] | |
| for cond_name in features.keys(): | |
| task_idx = getattr(ExtraCondition, cond_name).value | |
| if not isinstance(features[cond_name], list): | |
| inputs.append(features[cond_name] + self.task_embedding[task_idx]) | |
| continue | |
| feat_seq = [] | |
| for idx, feature_map in enumerate(features[cond_name]): | |
| feature_vec = torch.mean(feature_map, dim=(2, 3)) | |
| feature_vec = self.spatial_feat_mapping[idx](feature_vec) | |
| feat_seq.append(feature_vec) | |
| feat_seq = torch.stack(feat_seq, dim=1) # Nx4xC | |
| feat_seq = feat_seq + self.task_embedding[task_idx] | |
| feat_seq = feat_seq + self.positional_embedding | |
| inputs.append(feat_seq) | |
| x = torch.cat(inputs, dim=1) # NxLxC | |
| x = self.ln_pre(x) | |
| x = x.permute(1, 0, 2) # NLD -> LND | |
| x = self.transformer_layes(x) | |
| x = x.permute(1, 0, 2) # LND -> NLD | |
| x = self.ln_post(x) | |
| ret_feat_map = None | |
| ret_feat_seq = None | |
| cur_seq_idx = 0 | |
| for cond_name in features.keys(): | |
| if not isinstance(features[cond_name], list): | |
| length = features[cond_name].size(1) | |
| transformed_feature = features[cond_name] * ( | |
| (x[:, cur_seq_idx : cur_seq_idx + length] @ self.seq_proj) + 1 | |
| ) | |
| if ret_feat_seq is None: | |
| ret_feat_seq = transformed_feature | |
| else: | |
| ret_feat_seq = torch.cat([ret_feat_seq, transformed_feature], dim=1) | |
| cur_seq_idx += length | |
| continue | |
| length = len(features[cond_name]) | |
| transformed_feature_list = [] | |
| for idx in range(length): | |
| alpha = self.spatial_ch_projs[idx](x[:, cur_seq_idx + idx]) | |
| alpha = alpha.unsqueeze(-1).unsqueeze(-1) + 1 | |
| transformed_feature_list.append(features[cond_name][idx] * alpha) | |
| if ret_feat_map is None: | |
| ret_feat_map = transformed_feature_list | |
| else: | |
| ret_feat_map = list( | |
| map(lambda x, y: x + y, ret_feat_map, transformed_feature_list) | |
| ) | |
| cur_seq_idx += length | |
| assert cur_seq_idx == x.size(1) | |
| return ret_feat_map, ret_feat_seq | |