Commit
·
583f98e
1
Parent(s):
baaac86
v3.0.1-Test Image Classifier with Pytorch
Browse files- app.py +33 -12
- requirements.txt +5 -1
app.py
CHANGED
|
@@ -1,20 +1,41 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
sepia_filter = np.array([
|
| 6 |
-
[0.393, 0.769, 0.189],
|
| 7 |
-
[0.349, 0.686, 0.168],
|
| 8 |
-
[0.272, 0.534, 0.131]
|
| 9 |
-
])
|
| 10 |
-
sepia_img = input_img.dot(sepia_filter.T)
|
| 11 |
-
sepia_img /= sepia_img.max()
|
| 12 |
-
return sepia_img
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
demo.launch()
|
| 19 |
|
| 20 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import requests
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from torchvision import transforms
|
| 7 |
|
| 8 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Download human-readable labels for ImageNet.
|
| 11 |
+
response = requests.get("https://git.io/JJkYN")
|
| 12 |
+
labels = response.text.split("\n")
|
| 13 |
|
| 14 |
+
# def sepia(input_img):
|
| 15 |
+
# sepia_filter = np.array([
|
| 16 |
+
# [0.393, 0.769, 0.189],
|
| 17 |
+
# [0.349, 0.686, 0.168],
|
| 18 |
+
# [0.272, 0.534, 0.131]
|
| 19 |
+
# ])
|
| 20 |
+
# sepia_img = input_img.dot(sepia_filter.T)
|
| 21 |
+
# sepia_img /= sepia_img.max()
|
| 22 |
+
# return sepia_img
|
| 23 |
+
|
| 24 |
+
# def greet(name):
|
| 25 |
+
# return "Hello " + name + "!!"
|
| 26 |
+
|
| 27 |
+
def predict(inp):
|
| 28 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
| 31 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
| 32 |
+
return confidences
|
| 33 |
+
|
| 34 |
+
# demo = gr.Interface(fn=sepia, inputs="image", outputs="image")
|
| 35 |
+
demo = gr.Interface(fn=predict,
|
| 36 |
+
inputs=gr.Image(type="pil"),
|
| 37 |
+
outputs=gr.Label(num_top_classes=3),
|
| 38 |
+
examples=["lion.jpg", "cheetah.jpg"])
|
| 39 |
demo.launch()
|
| 40 |
|
| 41 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
requirements.txt
CHANGED
|
@@ -1,2 +1,6 @@
|
|
| 1 |
gradio
|
| 2 |
-
numpy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
+
numpy
|
| 3 |
+
torch
|
| 4 |
+
requests
|
| 5 |
+
PIL
|
| 6 |
+
torchvision
|