Spaces:
Running
Running
| """ | |
| FastAPI Router for Embeddings Service (Revised & Simplified) | |
| Exposes the EmbeddingsService methods via a RESTful API. | |
| Supported Text Model IDs: | |
| - "multilingual-e5-small" | |
| - "multilingual-e5-base" | |
| - "multilingual-e5-large" | |
| - "snowflake-arctic-embed-l-v2.0" | |
| - "paraphrase-multilingual-MiniLM-L12-v2" | |
| - "paraphrase-multilingual-mpnet-base-v2" | |
| - "bge-m3" | |
| - "gte-multilingual-base" | |
| Supported Image Model IDs: | |
| - "siglip-base-patch16-256-multilingual" | |
| """ | |
| from __future__ import annotations | |
| import logging | |
| import os | |
| from typing import Dict, Any, List, Union | |
| from enum import Enum | |
| from datetime import datetime | |
| from fastapi import APIRouter, BackgroundTasks, HTTPException | |
| from pydantic import BaseModel, Field | |
| from .analytics import Analytics | |
| from .service import ( | |
| ModelConfig, | |
| TextModelType, | |
| ImageModelType, | |
| EmbeddingsService, | |
| ) | |
| logger = logging.getLogger(__name__) | |
| router = APIRouter( | |
| tags=["v1"], | |
| responses={404: {"description": "Not found"}}, | |
| ) | |
| class ModelKind(str, Enum): | |
| TEXT = "text" | |
| IMAGE = "image" | |
| def detect_model_kind(model_id: str) -> ModelKind: | |
| """ | |
| Detect whether model_id is for a text or an image model. | |
| Raises ValueError if unrecognized. | |
| """ | |
| if model_id in [m.value for m in TextModelType]: | |
| return ModelKind.TEXT | |
| elif model_id in [m.value for m in ImageModelType]: | |
| return ModelKind.IMAGE | |
| else: | |
| raise ValueError( | |
| f"Unrecognized model ID: {model_id}.\n" | |
| f"Valid text: {[m.value for m in TextModelType]}\n" | |
| f"Valid image: {[m.value for m in ImageModelType]}" | |
| ) | |
| class EmbeddingRequest(BaseModel): | |
| """ | |
| Input to /v1/embeddings | |
| """ | |
| model: str = Field( | |
| default=TextModelType.MULTILINGUAL_E5_SMALL.value, | |
| description=( | |
| "Which model ID to use? " | |
| "Text: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', 'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', 'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. " | |
| "Image: ['siglip-base-patch16-256-multilingual']." | |
| ), | |
| ) | |
| input: Union[str, List[str]] = Field( | |
| ..., description="Text(s) or Image URL(s)/path(s)." | |
| ) | |
| class RankRequest(BaseModel): | |
| """ | |
| Input to /v1/rank | |
| """ | |
| model: str = Field( | |
| default=TextModelType.MULTILINGUAL_E5_SMALL.value, | |
| description=( | |
| "Model ID for the queries. " | |
| "Text or Image model, e.g. 'siglip-base-patch16-256-multilingual' for images." | |
| ), | |
| ) | |
| queries: Union[str, List[str]] = Field( | |
| ..., description="Query text or image(s) depending on the model type." | |
| ) | |
| candidates: List[str] = Field( | |
| ..., description="Candidate texts to rank. Must be text." | |
| ) | |
| class EmbeddingResponse(BaseModel): | |
| """ | |
| Response of /v1/embeddings | |
| """ | |
| object: str | |
| data: List[dict] | |
| model: str | |
| usage: dict | |
| class RankResponse(BaseModel): | |
| """ | |
| Response of /v1/rank | |
| """ | |
| probabilities: List[List[float]] | |
| cosine_similarities: List[List[float]] | |
| class StatsBucket(BaseModel): | |
| """Helper model for daily/weekly/monthly/yearly stats""" | |
| total: Dict[str, int] | |
| daily: Dict[str, int] | |
| weekly: Dict[str, int] | |
| monthly: Dict[str, int] | |
| yearly: Dict[str, int] | |
| class StatsResponse(BaseModel): | |
| """Analytics stats response model, including both access and token counts""" | |
| access: StatsBucket | |
| tokens: StatsBucket | |
| service_config = ModelConfig() | |
| embeddings_service = EmbeddingsService(config=service_config) | |
| analytics = Analytics( | |
| redis_url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"), sync_interval=60 | |
| ) | |
| async def create_embeddings( | |
| request: EmbeddingRequest, background_tasks: BackgroundTasks | |
| ): | |
| """ | |
| Generates embeddings for the given input (text or image). | |
| """ | |
| try: | |
| # 1) Determine if it's text or image | |
| mkind = detect_model_kind(request.model) | |
| # 2) Update global service config so it uses the correct model | |
| if mkind == ModelKind.TEXT: | |
| service_config.text_model_type = TextModelType(request.model) | |
| else: | |
| service_config.image_model_type = ImageModelType(request.model) | |
| # 3) Generate | |
| embeddings = await embeddings_service.generate_embeddings( | |
| input_data=request.input, modality=mkind.value | |
| ) | |
| # 4) Estimate tokens for text only | |
| total_tokens = 0 | |
| if mkind == ModelKind.TEXT: | |
| total_tokens = embeddings_service.estimate_tokens(request.input) | |
| resp = { | |
| "object": "list", | |
| "data": [], | |
| "model": request.model, | |
| "usage": { | |
| "prompt_tokens": total_tokens, | |
| "total_tokens": total_tokens, | |
| }, | |
| } | |
| background_tasks.add_task( | |
| analytics.access, request.model, resp["usage"]["total_tokens"] | |
| ) | |
| for idx, emb in enumerate(embeddings): | |
| resp["data"].append( | |
| { | |
| "object": "embedding", | |
| "index": idx, | |
| "embedding": emb.tolist(), | |
| } | |
| ) | |
| return resp | |
| except Exception as e: | |
| msg = ( | |
| "Failed to generate embeddings. Check model ID, inputs, etc.\n" | |
| f"Details: {str(e)}" | |
| ) | |
| logger.error(msg) | |
| raise HTTPException(status_code=500, detail=msg) | |
| async def rank_candidates(request: RankRequest, background_tasks: BackgroundTasks): | |
| """ | |
| Ranks candidate texts against the given queries (which can be text or image). | |
| """ | |
| try: | |
| mkind = detect_model_kind(request.model) | |
| if mkind == ModelKind.TEXT: | |
| service_config.text_model_type = TextModelType(request.model) | |
| else: | |
| service_config.image_model_type = ImageModelType(request.model) | |
| results = await embeddings_service.rank( | |
| queries=request.queries, | |
| candidates=request.candidates, | |
| modality=mkind.value, | |
| ) | |
| background_tasks.add_task( | |
| analytics.access, request.model, results["usage"]["total_tokens"] | |
| ) | |
| return results | |
| except Exception as e: | |
| msg = ( | |
| "Failed to rank candidates. Check model ID, inputs, etc.\n" | |
| f"Details: {str(e)}" | |
| ) | |
| logger.error(msg) | |
| raise HTTPException(status_code=500, detail=msg) | |
| async def get_stats(): | |
| """Get usage statistics for all models, including access and tokens.""" | |
| try: | |
| day_key = datetime.utcnow().strftime("%Y-%m-%d") | |
| week_key = f"{datetime.utcnow().year}-W{datetime.utcnow().strftime('%U')}" | |
| month_key = datetime.utcnow().strftime("%Y-%m") | |
| year_key = datetime.utcnow().strftime("%Y") | |
| stats_data = await analytics.stats() # { "access": {...}, "tokens": {...} } | |
| return { | |
| "access": { | |
| "total": stats_data["access"].get("total", {}), | |
| "daily": stats_data["access"].get(day_key, {}), | |
| "weekly": stats_data["access"].get(week_key, {}), | |
| "monthly": stats_data["access"].get(month_key, {}), | |
| "yearly": stats_data["access"].get(year_key, {}), | |
| }, | |
| "tokens": { | |
| "total": stats_data["tokens"].get("total", {}), | |
| "daily": stats_data["tokens"].get(day_key, {}), | |
| "weekly": stats_data["tokens"].get(week_key, {}), | |
| "monthly": stats_data["tokens"].get(month_key, {}), | |
| "yearly": stats_data["tokens"].get(year_key, {}), | |
| }, | |
| } | |
| except Exception as e: | |
| msg = f"Failed to fetch analytics stats: {str(e)}" | |
| logger.error(msg) | |
| raise HTTPException(status_code=500, detail=msg) | |