Spaces:
Running
Running
chore: update something
Browse files- lightweight_embeddings/__init__.py +22 -6
- lightweight_embeddings/analytics.py +78 -0
- lightweight_embeddings/router.py +52 -4
- requirements.txt +1 -0
lightweight_embeddings/__init__.py
CHANGED
|
@@ -124,11 +124,23 @@ def call_embeddings_api(user_input: str, selected_model: str) -> str:
|
|
| 124 |
|
| 125 |
try:
|
| 126 |
data = response.json()
|
| 127 |
-
return json.dumps(data, indent=2)
|
| 128 |
except ValueError:
|
| 129 |
return "❌ Failed to parse JSON from API response."
|
| 130 |
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
def create_main_interface():
|
| 133 |
"""
|
| 134 |
Creates a Gradio Blocks interface showing project info and an embeddings playground.
|
|
@@ -147,10 +159,7 @@ def create_main_interface():
|
|
| 147 |
]
|
| 148 |
|
| 149 |
with gr.Blocks(title="Lightweight Embeddings", theme="default") as demo:
|
| 150 |
-
#
|
| 151 |
-
gr.Markdown(APP_DESCRIPTION)
|
| 152 |
-
|
| 153 |
-
# Split Layout: Playground and cURL Examples
|
| 154 |
with gr.Row():
|
| 155 |
with gr.Column():
|
| 156 |
gr.Markdown("### 🔬 Try the Embeddings Playground")
|
|
@@ -171,7 +180,6 @@ def create_main_interface():
|
|
| 171 |
interactive=False,
|
| 172 |
)
|
| 173 |
|
| 174 |
-
# Link button to inference function
|
| 175 |
generate_btn.click(
|
| 176 |
fn=call_embeddings_api,
|
| 177 |
inputs=[input_text, model_dropdown],
|
|
@@ -214,6 +222,14 @@ def create_main_interface():
|
|
| 214 |
"""
|
| 215 |
)
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
return demo
|
| 218 |
|
| 219 |
|
|
|
|
| 124 |
|
| 125 |
try:
|
| 126 |
data = response.json()
|
| 127 |
+
return json.dumps(data, indent=2, ensure_ascii=False)
|
| 128 |
except ValueError:
|
| 129 |
return "❌ Failed to parse JSON from API response."
|
| 130 |
|
| 131 |
|
| 132 |
+
def call_stats_api() -> str:
|
| 133 |
+
"""
|
| 134 |
+
Calls the /v1/stats endpoint to retrieve analytics data.
|
| 135 |
+
Returns the JSON response as a formatted string.
|
| 136 |
+
"""
|
| 137 |
+
url = "https://lamhieu-lightweight-embeddings.hf.space/v1/stats"
|
| 138 |
+
response = requests.get(url)
|
| 139 |
+
if response.status_code != 200:
|
| 140 |
+
raise ValueError(f"Failed to fetch stats: {response.text}")
|
| 141 |
+
return json.dumps(response.json(), indent=2, ensure_ascii=False)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
def create_main_interface():
|
| 145 |
"""
|
| 146 |
Creates a Gradio Blocks interface showing project info and an embeddings playground.
|
|
|
|
| 159 |
]
|
| 160 |
|
| 161 |
with gr.Blocks(title="Lightweight Embeddings", theme="default") as demo:
|
| 162 |
+
# ...existing code...
|
|
|
|
|
|
|
|
|
|
| 163 |
with gr.Row():
|
| 164 |
with gr.Column():
|
| 165 |
gr.Markdown("### 🔬 Try the Embeddings Playground")
|
|
|
|
| 180 |
interactive=False,
|
| 181 |
)
|
| 182 |
|
|
|
|
| 183 |
generate_btn.click(
|
| 184 |
fn=call_embeddings_api,
|
| 185 |
inputs=[input_text, model_dropdown],
|
|
|
|
| 222 |
"""
|
| 223 |
)
|
| 224 |
|
| 225 |
+
# NEW STATS SECTION
|
| 226 |
+
with gr.Accordion("Analytics Stats"):
|
| 227 |
+
stats_btn = gr.Button("Get Stats")
|
| 228 |
+
stats_json = gr.Textbox(
|
| 229 |
+
label="Stats API Response", lines=10, interactive=False
|
| 230 |
+
)
|
| 231 |
+
stats_btn.click(fn=call_stats_api, inputs=[], outputs=stats_json)
|
| 232 |
+
|
| 233 |
return demo
|
| 234 |
|
| 235 |
|
lightweight_embeddings/analytics.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
import redis.asyncio as redis
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
from typing import Dict
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Analytics:
|
| 9 |
+
def __init__(self, redis_url: str, sync_interval: int = 60):
|
| 10 |
+
"""
|
| 11 |
+
Initializes the Analytics class with an async Redis connection and sync interval.
|
| 12 |
+
|
| 13 |
+
Parameters:
|
| 14 |
+
- redis_url: Redis connection URL (e.g., 'redis://localhost:6379/0')
|
| 15 |
+
- sync_interval: Interval in seconds for syncing with Redis.
|
| 16 |
+
"""
|
| 17 |
+
self.pool = redis.ConnectionPool.from_url(redis_url, decode_responses=True)
|
| 18 |
+
self.redis_client = redis.Redis(connection_pool=self.pool)
|
| 19 |
+
self.local_buffer = defaultdict(
|
| 20 |
+
lambda: defaultdict(int)
|
| 21 |
+
) # {period: {model_id: count}}
|
| 22 |
+
self.sync_interval = sync_interval
|
| 23 |
+
self.lock = asyncio.Lock() # Async lock for thread-safe updates
|
| 24 |
+
asyncio.create_task(self._start_sync_task())
|
| 25 |
+
|
| 26 |
+
def _get_period_keys(self) -> tuple:
|
| 27 |
+
"""
|
| 28 |
+
Returns keys for day, week, month, and year based on the current date.
|
| 29 |
+
"""
|
| 30 |
+
now = datetime.utcnow()
|
| 31 |
+
day_key = now.strftime("%Y-%m-%d")
|
| 32 |
+
week_key = f"{now.year}-W{now.strftime('%U')}"
|
| 33 |
+
month_key = now.strftime("%Y-%m")
|
| 34 |
+
year_key = now.strftime("%Y")
|
| 35 |
+
return day_key, week_key, month_key, year_key
|
| 36 |
+
|
| 37 |
+
async def access(self, model_id: str):
|
| 38 |
+
"""
|
| 39 |
+
Records an access for a specific model_id.
|
| 40 |
+
"""
|
| 41 |
+
day_key, week_key, month_key, year_key = self._get_period_keys()
|
| 42 |
+
|
| 43 |
+
async with self.lock:
|
| 44 |
+
self.local_buffer[day_key][model_id] += 1
|
| 45 |
+
self.local_buffer[week_key][model_id] += 1
|
| 46 |
+
self.local_buffer[month_key][model_id] += 1
|
| 47 |
+
self.local_buffer[year_key][model_id] += 1
|
| 48 |
+
self.local_buffer["total"][model_id] += 1
|
| 49 |
+
|
| 50 |
+
async def stats(self) -> Dict[str, Dict[str, int]]:
|
| 51 |
+
"""
|
| 52 |
+
Returns statistics for all models from the local buffer.
|
| 53 |
+
"""
|
| 54 |
+
async with self.lock:
|
| 55 |
+
return {
|
| 56 |
+
period: dict(models) for period, models in self.local_buffer.items()
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
async def _sync_to_redis(self):
|
| 60 |
+
"""
|
| 61 |
+
Synchronizes local buffer data with Redis.
|
| 62 |
+
"""
|
| 63 |
+
async with self.lock:
|
| 64 |
+
pipeline = self.redis_client.pipeline()
|
| 65 |
+
for period, models in self.local_buffer.items():
|
| 66 |
+
for model_id, count in models.items():
|
| 67 |
+
redis_key = f"analytics:{period}"
|
| 68 |
+
pipeline.hincrby(redis_key, model_id, count)
|
| 69 |
+
await pipeline.execute()
|
| 70 |
+
self.local_buffer.clear() # Clear the buffer after sync
|
| 71 |
+
|
| 72 |
+
async def _start_sync_task(self):
|
| 73 |
+
"""
|
| 74 |
+
Starts a background task that periodically syncs data to Redis.
|
| 75 |
+
"""
|
| 76 |
+
while True:
|
| 77 |
+
await asyncio.sleep(self.sync_interval)
|
| 78 |
+
await self._sync_to_redis()
|
lightweight_embeddings/router.py
CHANGED
|
@@ -20,12 +20,15 @@ Supported Image Model IDs:
|
|
| 20 |
from __future__ import annotations
|
| 21 |
|
| 22 |
import logging
|
| 23 |
-
|
|
|
|
| 24 |
from enum import Enum
|
|
|
|
| 25 |
|
| 26 |
-
from fastapi import APIRouter, HTTPException
|
| 27 |
from pydantic import BaseModel, Field
|
| 28 |
|
|
|
|
| 29 |
from .service import (
|
| 30 |
ModelConfig,
|
| 31 |
TextModelType,
|
|
@@ -120,12 +123,29 @@ class RankResponse(BaseModel):
|
|
| 120 |
probabilities: List[List[float]]
|
| 121 |
cosine_similarities: List[List[float]]
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
service_config = ModelConfig()
|
| 124 |
embeddings_service = EmbeddingsService(config=service_config)
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
@router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"])
|
| 128 |
-
async def create_embeddings(
|
|
|
|
|
|
|
| 129 |
"""
|
| 130 |
Generates embeddings for the given input (text or image).
|
| 131 |
"""
|
|
@@ -144,6 +164,8 @@ async def create_embeddings(request: EmbeddingRequest):
|
|
| 144 |
input_data=request.input, modality=mkind.value
|
| 145 |
)
|
| 146 |
|
|
|
|
|
|
|
| 147 |
# 4) Estimate tokens for text only
|
| 148 |
total_tokens = 0
|
| 149 |
if mkind == ModelKind.TEXT:
|
|
@@ -158,6 +180,7 @@ async def create_embeddings(request: EmbeddingRequest):
|
|
| 158 |
"total_tokens": total_tokens,
|
| 159 |
},
|
| 160 |
}
|
|
|
|
| 161 |
for idx, emb in enumerate(embeddings):
|
| 162 |
resp["data"].append(
|
| 163 |
{
|
|
@@ -179,7 +202,7 @@ async def create_embeddings(request: EmbeddingRequest):
|
|
| 179 |
|
| 180 |
|
| 181 |
@router.post("/rank", response_model=RankResponse, tags=["rank"])
|
| 182 |
-
async def rank_candidates(request: RankRequest):
|
| 183 |
"""
|
| 184 |
Ranks candidate texts against the given queries (which can be text or image).
|
| 185 |
"""
|
|
@@ -196,6 +219,9 @@ async def rank_candidates(request: RankRequest):
|
|
| 196 |
candidates=request.candidates,
|
| 197 |
modality=mkind.value,
|
| 198 |
)
|
|
|
|
|
|
|
|
|
|
| 199 |
return results
|
| 200 |
|
| 201 |
except Exception as e:
|
|
@@ -205,3 +231,25 @@ async def rank_candidates(request: RankRequest):
|
|
| 205 |
)
|
| 206 |
logger.error(msg)
|
| 207 |
raise HTTPException(status_code=500, detail=msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
from __future__ import annotations
|
| 21 |
|
| 22 |
import logging
|
| 23 |
+
import os
|
| 24 |
+
from typing import Dict, Any, List, Union
|
| 25 |
from enum import Enum
|
| 26 |
+
from datetime import datetime
|
| 27 |
|
| 28 |
+
from fastapi import APIRouter, BackgroundTasks, HTTPException
|
| 29 |
from pydantic import BaseModel, Field
|
| 30 |
|
| 31 |
+
from .analytics import Analytics
|
| 32 |
from .service import (
|
| 33 |
ModelConfig,
|
| 34 |
TextModelType,
|
|
|
|
| 123 |
probabilities: List[List[float]]
|
| 124 |
cosine_similarities: List[List[float]]
|
| 125 |
|
| 126 |
+
|
| 127 |
+
class StatsResponse(BaseModel):
|
| 128 |
+
"""Analytics stats response model"""
|
| 129 |
+
|
| 130 |
+
total: Dict[str, int]
|
| 131 |
+
daily: Dict[str, int]
|
| 132 |
+
weekly: Dict[str, int]
|
| 133 |
+
monthly: Dict[str, int]
|
| 134 |
+
yearly: Dict[str, int]
|
| 135 |
+
|
| 136 |
+
|
| 137 |
service_config = ModelConfig()
|
| 138 |
embeddings_service = EmbeddingsService(config=service_config)
|
| 139 |
|
| 140 |
+
analytics = Analytics(
|
| 141 |
+
redis_url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"), sync_interval=60
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
|
| 145 |
@router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"])
|
| 146 |
+
async def create_embeddings(
|
| 147 |
+
request: EmbeddingRequest, background_tasks: BackgroundTasks
|
| 148 |
+
):
|
| 149 |
"""
|
| 150 |
Generates embeddings for the given input (text or image).
|
| 151 |
"""
|
|
|
|
| 164 |
input_data=request.input, modality=mkind.value
|
| 165 |
)
|
| 166 |
|
| 167 |
+
background_tasks.add_task(analytics.access, request.model)
|
| 168 |
+
|
| 169 |
# 4) Estimate tokens for text only
|
| 170 |
total_tokens = 0
|
| 171 |
if mkind == ModelKind.TEXT:
|
|
|
|
| 180 |
"total_tokens": total_tokens,
|
| 181 |
},
|
| 182 |
}
|
| 183 |
+
|
| 184 |
for idx, emb in enumerate(embeddings):
|
| 185 |
resp["data"].append(
|
| 186 |
{
|
|
|
|
| 202 |
|
| 203 |
|
| 204 |
@router.post("/rank", response_model=RankResponse, tags=["rank"])
|
| 205 |
+
async def rank_candidates(request: RankRequest, background_tasks: BackgroundTasks):
|
| 206 |
"""
|
| 207 |
Ranks candidate texts against the given queries (which can be text or image).
|
| 208 |
"""
|
|
|
|
| 219 |
candidates=request.candidates,
|
| 220 |
modality=mkind.value,
|
| 221 |
)
|
| 222 |
+
|
| 223 |
+
background_tasks.add_task(analytics.access, request.model)
|
| 224 |
+
|
| 225 |
return results
|
| 226 |
|
| 227 |
except Exception as e:
|
|
|
|
| 231 |
)
|
| 232 |
logger.error(msg)
|
| 233 |
raise HTTPException(status_code=500, detail=msg)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
@router.get("/stats", response_model=StatsResponse, tags=["stats"])
|
| 237 |
+
async def get_stats():
|
| 238 |
+
"""Get usage statistics for all models"""
|
| 239 |
+
try:
|
| 240 |
+
stats = await analytics.stats()
|
| 241 |
+
|
| 242 |
+
return {
|
| 243 |
+
"total": stats.get("total", {}),
|
| 244 |
+
"daily": stats.get(datetime.utcnow().strftime("%Y-%m-%d"), {}),
|
| 245 |
+
"weekly": stats.get(
|
| 246 |
+
f"{datetime.utcnow().year}-W{datetime.utcnow().strftime('%U')}", {}
|
| 247 |
+
),
|
| 248 |
+
"monthly": stats.get(datetime.utcnow().strftime("%Y-%m"), {}),
|
| 249 |
+
"yearly": stats.get(datetime.utcnow().strftime("%Y"), {}),
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
except Exception as e:
|
| 253 |
+
msg = f"Failed to fetch analytics stats: {str(e)}"
|
| 254 |
+
logger.error(msg)
|
| 255 |
+
raise HTTPException(status_code=500, detail=msg)
|
requirements.txt
CHANGED
|
@@ -7,3 +7,4 @@ sentence-transformers[onnx]==3.3.1
|
|
| 7 |
sentencepiece==0.2.0
|
| 8 |
torch==2.4.0
|
| 9 |
transformers==4.45.0
|
|
|
|
|
|
| 7 |
sentencepiece==0.2.0
|
| 8 |
torch==2.4.0
|
| 9 |
transformers==4.45.0
|
| 10 |
+
redis-py=5.2.1
|