Commit
·
937fc50
1
Parent(s):
40c4763
use moses sentence segmenter instead of tokenizer
Browse files- src/whisper_streaming/online_asr.py +26 -15
- whisper_online.py +4 -3
src/whisper_streaming/online_asr.py
CHANGED
|
@@ -87,11 +87,20 @@ class OnlineASRProcessor:
|
|
| 87 |
buffer_trimming=("segment", 15),
|
| 88 |
logfile=sys.stderr,
|
| 89 |
):
|
| 90 |
-
"""
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
"""
|
| 96 |
self.asr = asr
|
| 97 |
self.tokenize = tokenize_method
|
|
@@ -194,24 +203,25 @@ class OnlineASRProcessor:
|
|
| 194 |
def chunk_completed_sentence(self):
|
| 195 |
if self.commited == []:
|
| 196 |
return
|
| 197 |
-
|
| 198 |
-
raw_text = self.asr.sep.join([s[2] for s in self.commited])
|
| 199 |
-
logger.debug(f"[Sentence-segmentation] Raw Text: {raw_text}")
|
| 200 |
|
| 201 |
sents = self.words_to_sentences(self.commited)
|
| 202 |
|
| 203 |
|
| 204 |
|
| 205 |
-
for s in sents:
|
| 206 |
-
logger.debug(f"[Sentence-segmentation] completed sentence: {s}")
|
| 207 |
if len(sents) < 2:
|
|
|
|
| 208 |
return
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
# we will continue with audio processing at this timestamp
|
| 212 |
chunk_at = sents[-2][1]
|
| 213 |
|
| 214 |
-
logger.debug(f"[Sentence-segmentation]: sentence chunked at {chunk_at:2.2f}")
|
| 215 |
self.chunk_at(chunk_at)
|
| 216 |
|
| 217 |
def chunk_completed_segment(self, res):
|
|
@@ -249,8 +259,9 @@ class OnlineASRProcessor:
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
cwords = [w for w in words]
|
| 252 |
-
t =
|
| 253 |
-
|
|
|
|
| 254 |
out = []
|
| 255 |
while s:
|
| 256 |
beg = None
|
|
|
|
| 87 |
buffer_trimming=("segment", 15),
|
| 88 |
logfile=sys.stderr,
|
| 89 |
):
|
| 90 |
+
"""
|
| 91 |
+
Initialize OnlineASRProcessor.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
asr: WhisperASR object
|
| 95 |
+
tokenize_method: Sentence tokenizer function for the target language.
|
| 96 |
+
Must be a function that takes a list of text as input like MosesSentenceSplitter.
|
| 97 |
+
Can be None if using "segment" buffer trimming option.
|
| 98 |
+
buffer_trimming: Tuple of (option, seconds) where:
|
| 99 |
+
- option: Either "sentence" or "segment"
|
| 100 |
+
- seconds: Number of seconds threshold for buffer trimming
|
| 101 |
+
Default is ("segment", 15)
|
| 102 |
+
logfile: File to store logs
|
| 103 |
+
|
| 104 |
"""
|
| 105 |
self.asr = asr
|
| 106 |
self.tokenize = tokenize_method
|
|
|
|
| 203 |
def chunk_completed_sentence(self):
|
| 204 |
if self.commited == []:
|
| 205 |
return
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
sents = self.words_to_sentences(self.commited)
|
| 208 |
|
| 209 |
|
| 210 |
|
|
|
|
|
|
|
| 211 |
if len(sents) < 2:
|
| 212 |
+
logger.debug(f"[Sentence-segmentation] no sentence segmented.")
|
| 213 |
return
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
identified_sentence= "\n - ".join([f"{s[0]*1000:.0f}-{s[1]*1000:.0f} {s[2]}" for s in sents])
|
| 218 |
+
logger.debug(f"[Sentence-segmentation] identified sentences:\n - {identified_sentence}")
|
| 219 |
+
|
| 220 |
+
|
| 221 |
# we will continue with audio processing at this timestamp
|
| 222 |
chunk_at = sents[-2][1]
|
| 223 |
|
| 224 |
+
logger.debug(f"[Sentence-segmentation]: sentence will be chunked at {chunk_at:2.2f}")
|
| 225 |
self.chunk_at(chunk_at)
|
| 226 |
|
| 227 |
def chunk_completed_segment(self, res):
|
|
|
|
| 259 |
"""
|
| 260 |
|
| 261 |
cwords = [w for w in words]
|
| 262 |
+
t = self.asr.sep.join(o[2] for o in cwords)
|
| 263 |
+
logger.debug(f"[Sentence-segmentation] Raw Text: {t}")
|
| 264 |
+
s = self.tokenize([t])
|
| 265 |
out = []
|
| 266 |
while s:
|
| 267 |
beg = None
|
whisper_online.py
CHANGED
|
@@ -49,16 +49,16 @@ def create_tokenizer(lan):
|
|
| 49 |
lan
|
| 50 |
in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split()
|
| 51 |
):
|
| 52 |
-
from mosestokenizer import
|
| 53 |
|
| 54 |
-
return
|
| 55 |
|
| 56 |
# the following languages are in Whisper, but not in wtpsplit:
|
| 57 |
if (
|
| 58 |
lan
|
| 59 |
in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split()
|
| 60 |
):
|
| 61 |
-
logger.
|
| 62 |
f"{lan} code is not supported by wtpsplit. Going to use None lang_code option."
|
| 63 |
)
|
| 64 |
lan = None
|
|
@@ -204,6 +204,7 @@ def backend_factory(args):
|
|
| 204 |
|
| 205 |
# Create the tokenizer
|
| 206 |
if args.buffer_trimming == "sentence":
|
|
|
|
| 207 |
tokenizer = create_tokenizer(tgt_language)
|
| 208 |
else:
|
| 209 |
tokenizer = None
|
|
|
|
| 49 |
lan
|
| 50 |
in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split()
|
| 51 |
):
|
| 52 |
+
from mosestokenizer import MosesSentenceSplitter
|
| 53 |
|
| 54 |
+
return MosesSentenceSplitter(lan)
|
| 55 |
|
| 56 |
# the following languages are in Whisper, but not in wtpsplit:
|
| 57 |
if (
|
| 58 |
lan
|
| 59 |
in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split()
|
| 60 |
):
|
| 61 |
+
logger.debug(
|
| 62 |
f"{lan} code is not supported by wtpsplit. Going to use None lang_code option."
|
| 63 |
)
|
| 64 |
lan = None
|
|
|
|
| 204 |
|
| 205 |
# Create the tokenizer
|
| 206 |
if args.buffer_trimming == "sentence":
|
| 207 |
+
|
| 208 |
tokenizer = create_tokenizer(tgt_language)
|
| 209 |
else:
|
| 210 |
tokenizer = None
|