Spaces:
Runtime error
Runtime error
File size: 10,183 Bytes
eeb0f9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
#!/usr/bin/env python3
"""
Mining Script: Vietnamese Medical Q&A Dataset
Downloads and processes hungnm/vietnamese-medical-qa from HuggingFace
Splits into 2 collections: symptom_qa and general_health_qa
"""
import sys
import pandas as pd
from pathlib import Path
def download_medical_qa():
"""Download Vietnamese Medical Q&A dataset from HuggingFace"""
try:
from datasets import load_dataset
print("📥 Downloading Vietnamese Medical Q&A from HuggingFace...")
print(" Source: hungnm/vietnamese-medical-qa")
print(" Size: ~9,335 Q&A pairs")
# Download dataset
dataset = load_dataset("hungnm/vietnamese-medical-qa")
df = dataset['train'].to_pandas()
print(f"✅ Downloaded: {len(df)} Q&A pairs")
# Save to CSV
output_dir = Path("data_mining/datasets")
output_dir.mkdir(parents=True, exist_ok=True)
output_path = output_dir / "vietnamese_medical_qa.csv"
df.to_csv(output_path, index=False, encoding='utf-8')
print(f"💾 Saved to: {output_path}")
return df
except ImportError:
print("❌ Error: 'datasets' library not installed")
print(" Install with: pip install datasets")
return None
except Exception as e:
print(f"❌ Error downloading dataset: {e}")
return None
def is_symptom_question(question):
"""
Classify if question is about SPECIFIC SYMPTOMS
Returns:
bool: True if symptom question, False if general health question
"""
if not question or not isinstance(question, str):
return False
question_lower = question.lower()
# Symptom keywords (high priority - user describing active symptoms)
symptom_keywords = [
# Pain
'bị đau', 'đau', 'nhức', 'tức', 'đau nhức',
# Infection/Fever
'bị sốt', 'sốt', 'viêm', 'nhiễm trùng', 'mủ', 'sưng',
# Digestive
'buồn nôn', 'nôn', 'tiêu chảy', 'táo bón', 'đầy hơi',
'ợ hơi', 'ợ chua', 'khó tiêu',
# Respiratory
'ho', 'khó thở', 'nghẹt mũi', 'chảy nước mũi',
'đau họng', 'khàn giọng',
# Neurological
'chóng mặt', 'hoa mắt', 'mất thăng bằng', 'đau đầu',
# Skin
'ngứa', 'phát ban', 'nổi mẩn', 'đỏ',
# General symptoms
'mệt mỏi', 'yếu', 'không khỏe', 'bị ốm', 'khó chịu'
]
# General health keywords (prevention, knowledge, advice)
general_keywords = [
# Prevention
'làm sao để không', 'phòng ngừa', 'tránh', 'cách phòng',
'làm thế nào để', 'cách nào để',
# Knowledge questions
'là gì', 'có phải', 'có nên', 'nên không',
'tại sao', 'nguyên nhân', 'có thể',
# Advice/Recommendations
'nên làm gì', 'nên ăn gì', 'có tốt không',
'có được không', 'có nên', 'khuyên'
]
# Count keyword matches
symptom_score = sum(1 for kw in symptom_keywords if kw in question_lower)
general_score = sum(1 for kw in general_keywords if kw in question_lower)
# Decision logic
if symptom_score > general_score:
return True # Symptom question
elif general_score > symptom_score:
return False # General health question
else:
# Tie-breaker: Check for "bị" (indicates having a condition)
return 'bị' in question_lower
def process_medical_qa():
"""Process and split into 2 ChromaDB collections"""
try:
from sentence_transformers import SentenceTransformer
import chromadb
print("\n🔄 Processing Vietnamese Medical Q&A...")
# Load CSV
csv_path = Path("data_mining/datasets/vietnamese_medical_qa.csv")
if not csv_path.exists():
print(f"❌ Error: {csv_path} not found")
return False
df = pd.read_csv(csv_path, encoding='utf-8')
print(f"📊 Loaded: {len(df)} Q&A pairs")
# Initialize embedding model
print("🤖 Loading embedding model: keepitreal/vietnamese-sbert...")
embedder = SentenceTransformer('keepitreal/vietnamese-sbert')
# Initialize ChromaDB
output_dir = Path("data_mining/output")
output_dir.mkdir(parents=True, exist_ok=True)
# Split data
symptom_data = []
general_data = []
print("🔍 Classifying questions...")
for idx, row in df.iterrows():
question = str(row['question'])
answer = str(row['answer'])
# Combine Q&A
text = f"Câu hỏi: {question}\n\nTrả lời: {answer}"
# Classify
if is_symptom_question(question):
symptom_data.append({
'id': f'symptom_qa_{idx}',
'text': text,
'question': question,
'answer': answer,
'type': 'symptom'
})
else:
general_data.append({
'id': f'general_qa_{idx}',
'text': text,
'question': question,
'answer': answer,
'type': 'general'
})
print(f"✅ Classification complete:")
print(f" - Symptom Q&A: {len(symptom_data)} ({len(symptom_data)/len(df)*100:.1f}%)")
print(f" - General Health Q&A: {len(general_data)} ({len(general_data)/len(df)*100:.1f}%)")
# Create ChromaDB collections
# 1. Symptom Q&A Collection
print("\n📦 Creating Symptom Q&A ChromaDB...")
symptom_client = chromadb.PersistentClient(path=str(output_dir / "symptom_qa_chroma"))
symptom_collection = symptom_client.get_or_create_collection(
name="symptom_qa",
metadata={"description": "Vietnamese Medical Q&A - Symptom Questions"}
)
# Batch insert symptom data
batch_size = 100
for i in range(0, len(symptom_data), batch_size):
batch = symptom_data[i:i+batch_size]
ids = [item['id'] for item in batch]
texts = [item['text'] for item in batch]
metadatas = [{
'type': item['type'],
'domain': 'symptom',
'agent': 'SymptomAgent',
'source': 'vietnamese-medical-qa'
} for item in batch]
# Generate embeddings
embeddings = embedder.encode(texts, show_progress_bar=False)
symptom_collection.add(
ids=ids,
embeddings=embeddings.tolist(),
documents=texts,
metadatas=metadatas
)
if (i + batch_size) % 500 == 0:
print(f" Processed {min(i+batch_size, len(symptom_data))}/{len(symptom_data)} symptom Q&A...")
print(f"✅ Symptom Q&A ChromaDB created: {len(symptom_data)} records")
# 2. General Health Q&A Collection
print("\n📦 Creating General Health Q&A ChromaDB...")
general_client = chromadb.PersistentClient(path=str(output_dir / "general_health_qa_chroma"))
general_collection = general_client.get_or_create_collection(
name="general_health_qa",
metadata={"description": "Vietnamese Medical Q&A - General Health Questions"}
)
# Batch insert general data
for i in range(0, len(general_data), batch_size):
batch = general_data[i:i+batch_size]
ids = [item['id'] for item in batch]
texts = [item['text'] for item in batch]
metadatas = [{
'type': item['type'],
'domain': 'general_health',
'agent': 'GeneralHealthAgent',
'source': 'vietnamese-medical-qa'
} for item in batch]
# Generate embeddings
embeddings = embedder.encode(texts, show_progress_bar=False)
general_collection.add(
ids=ids,
embeddings=embeddings.tolist(),
documents=texts,
metadatas=metadatas
)
if (i + batch_size) % 500 == 0:
print(f" Processed {min(i+batch_size, len(general_data))}/{len(general_data)} general Q&A...")
print(f"✅ General Health Q&A ChromaDB created: {len(general_data)} records")
print("\n✅ Processing complete!")
print(f" Output: {output_dir}")
print(f" - symptom_qa_chroma/ ({len(symptom_data)} records)")
print(f" - general_health_qa_chroma/ ({len(general_data)} records)")
return True
except ImportError as e:
print(f"❌ Error: Missing library - {e}")
print(" Install with: pip install sentence-transformers chromadb")
return False
except Exception as e:
print(f"❌ Error processing dataset: {e}")
import traceback
traceback.print_exc()
return False
def main():
"""Main execution"""
print("=" * 60)
print("Vietnamese Medical Q&A Dataset Mining")
print("Source: hungnm/vietnamese-medical-qa (HuggingFace)")
print("=" * 60)
# Step 1: Download
df = download_medical_qa()
if df is None:
print("\n❌ Download failed!")
return False
# Step 2: Process
success = process_medical_qa()
if not success:
print("\n❌ Processing failed!")
return False
print("\n" + "=" * 60)
print("✅ SUCCESS! Vietnamese Medical Q&A ready for RAG system")
print("=" * 60)
return True
if __name__ == "__main__":
success = main()
sys.exit(0 if success else 1)
|