Spaces:
Runtime error
Runtime error
File size: 14,379 Bytes
eeb0f9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
"""
Feedback System
Collect and learn from user ratings and corrections
"""
import json
from datetime import datetime
from pathlib import Path
from typing import Optional, Dict, Any, List
from enum import Enum
class FeedbackType(str, Enum):
"""Types of feedback"""
RATING = "rating"
CORRECTION = "correction"
THUMBS_UP = "thumbs_up"
THUMBS_DOWN = "thumbs_down"
REPORT = "report"
class FeedbackCategory(str, Enum):
"""Feedback categories"""
ACCURACY = "accuracy"
HELPFULNESS = "helpfulness"
TONE = "tone"
COMPLETENESS = "completeness"
SAFETY = "safety"
OTHER = "other"
class FeedbackCollector:
"""Collect user feedback on agent responses"""
def __init__(self, storage_dir: str = "feedback/data"):
self.storage_dir = Path(storage_dir)
self.storage_dir.mkdir(parents=True, exist_ok=True)
# Create subdirectories
(self.storage_dir / "ratings").mkdir(exist_ok=True)
(self.storage_dir / "corrections").mkdir(exist_ok=True)
(self.storage_dir / "reports").mkdir(exist_ok=True)
def collect_rating(
self,
user_id: str,
agent_name: str,
user_message: str,
agent_response: str,
rating: int,
category: Optional[FeedbackCategory] = None,
comment: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None
) -> str:
"""
Collect user rating for an agent response
Args:
user_id: User identifier
agent_name: Name of the agent
user_message: User's original message
agent_response: Agent's response
rating: Rating (1-5 stars)
category: Feedback category
comment: Optional user comment
metadata: Additional metadata
Returns:
Feedback ID
"""
feedback_id = f"{user_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
feedback_data = {
'feedback_id': feedback_id,
'user_id': user_id,
'agent_name': agent_name,
'feedback_type': FeedbackType.RATING,
'rating': rating,
'category': category.value if category else None,
'user_message': user_message,
'agent_response': agent_response,
'comment': comment,
'metadata': metadata or {},
'timestamp': datetime.now().isoformat()
}
# Save to file
file_path = self.storage_dir / "ratings" / f"{feedback_id}.json"
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(feedback_data, f, ensure_ascii=False, indent=2)
return feedback_id
def collect_correction(
self,
user_id: str,
agent_name: str,
user_message: str,
agent_response: str,
corrected_response: str,
correction_reason: str,
metadata: Optional[Dict[str, Any]] = None
) -> str:
"""
Collect user correction for an agent response
Args:
user_id: User identifier
agent_name: Name of the agent
user_message: User's original message
agent_response: Agent's incorrect response
corrected_response: User's corrected response
correction_reason: Why the correction was needed
metadata: Additional metadata
Returns:
Feedback ID
"""
feedback_id = f"{user_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
feedback_data = {
'feedback_id': feedback_id,
'user_id': user_id,
'agent_name': agent_name,
'feedback_type': FeedbackType.CORRECTION,
'user_message': user_message,
'agent_response': agent_response,
'corrected_response': corrected_response,
'correction_reason': correction_reason,
'metadata': metadata or {},
'timestamp': datetime.now().isoformat()
}
# Save to file
file_path = self.storage_dir / "corrections" / f"{feedback_id}.json"
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(feedback_data, f, ensure_ascii=False, indent=2)
return feedback_id
def collect_thumbs(
self,
user_id: str,
agent_name: str,
user_message: str,
agent_response: str,
is_positive: bool,
comment: Optional[str] = None
) -> str:
"""
Collect thumbs up/down feedback
Args:
user_id: User identifier
agent_name: Name of the agent
user_message: User's original message
agent_response: Agent's response
is_positive: True for thumbs up, False for thumbs down
comment: Optional comment
Returns:
Feedback ID
"""
feedback_type = FeedbackType.THUMBS_UP if is_positive else FeedbackType.THUMBS_DOWN
return self.collect_rating(
user_id=user_id,
agent_name=agent_name,
user_message=user_message,
agent_response=agent_response,
rating=5 if is_positive else 1,
comment=comment,
metadata={'feedback_type': feedback_type}
)
def report_issue(
self,
user_id: str,
agent_name: str,
user_message: str,
agent_response: str,
issue_type: str,
description: str,
severity: str = "medium"
) -> str:
"""
Report an issue with agent response
Args:
user_id: User identifier
agent_name: Name of the agent
user_message: User's original message
agent_response: Agent's problematic response
issue_type: Type of issue (harmful/incorrect/inappropriate/other)
description: Detailed description
severity: low/medium/high/critical
Returns:
Report ID
"""
report_id = f"report_{user_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
report_data = {
'report_id': report_id,
'user_id': user_id,
'agent_name': agent_name,
'feedback_type': FeedbackType.REPORT,
'user_message': user_message,
'agent_response': agent_response,
'issue_type': issue_type,
'description': description,
'severity': severity,
'status': 'pending',
'timestamp': datetime.now().isoformat()
}
# Save to file
file_path = self.storage_dir / "reports" / f"{report_id}.json"
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(report_data, f, ensure_ascii=False, indent=2)
return report_id
def get_feedback_stats(self, agent_name: Optional[str] = None) -> Dict[str, Any]:
"""
Get feedback statistics
Args:
agent_name: Filter by agent name (optional)
Returns:
Statistics dictionary
"""
stats = {
'total_ratings': 0,
'total_corrections': 0,
'total_reports': 0,
'average_rating': 0.0,
'rating_distribution': {1: 0, 2: 0, 3: 0, 4: 0, 5: 0},
'by_agent': {},
'by_category': {}
}
# Count ratings
ratings = []
for file_path in (self.storage_dir / "ratings").glob("*.json"):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
if agent_name and data.get('agent_name') != agent_name:
continue
rating = data.get('rating', 0)
ratings.append(rating)
stats['rating_distribution'][rating] += 1
# By agent
agent = data.get('agent_name', 'unknown')
if agent not in stats['by_agent']:
stats['by_agent'][agent] = {'count': 0, 'total_rating': 0}
stats['by_agent'][agent]['count'] += 1
stats['by_agent'][agent]['total_rating'] += rating
# By category
category = data.get('category', 'other')
if category not in stats['by_category']:
stats['by_category'][category] = 0
stats['by_category'][category] += 1
stats['total_ratings'] = len(ratings)
stats['average_rating'] = sum(ratings) / len(ratings) if ratings else 0.0
# Calculate average per agent
for agent in stats['by_agent']:
count = stats['by_agent'][agent]['count']
total = stats['by_agent'][agent]['total_rating']
stats['by_agent'][agent]['average'] = total / count if count > 0 else 0.0
# Count corrections
stats['total_corrections'] = len(list((self.storage_dir / "corrections").glob("*.json")))
# Count reports
stats['total_reports'] = len(list((self.storage_dir / "reports").glob("*.json")))
return stats
def get_low_rated_responses(
self,
min_rating: int = 2,
agent_name: Optional[str] = None,
limit: int = 50
) -> List[Dict[str, Any]]:
"""
Get low-rated responses for improvement
Args:
min_rating: Maximum rating to include (1-5)
agent_name: Filter by agent name
limit: Maximum number of results
Returns:
List of low-rated responses
"""
low_rated = []
for file_path in (self.storage_dir / "ratings").glob("*.json"):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
if data.get('rating', 5) <= min_rating:
if agent_name is None or data.get('agent_name') == agent_name:
low_rated.append(data)
# Sort by rating (lowest first)
low_rated.sort(key=lambda x: x.get('rating', 5))
return low_rated[:limit]
def get_corrections(
self,
agent_name: Optional[str] = None,
limit: int = 100
) -> List[Dict[str, Any]]:
"""
Get user corrections for learning
Args:
agent_name: Filter by agent name
limit: Maximum number of results
Returns:
List of corrections
"""
corrections = []
for file_path in (self.storage_dir / "corrections").glob("*.json"):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
if agent_name is None or data.get('agent_name') == agent_name:
corrections.append(data)
# Sort by timestamp (newest first)
corrections.sort(key=lambda x: x.get('timestamp', ''), reverse=True)
return corrections[:limit]
def export_for_fine_tuning(
self,
agent_name: str,
min_rating: int = 4,
include_corrections: bool = True,
output_file: Optional[str] = None
) -> str:
"""
Export high-quality feedback for fine-tuning
Args:
agent_name: Agent to export for
min_rating: Minimum rating to include
include_corrections: Include user corrections
output_file: Output file path
Returns:
Path to exported file
"""
if output_file is None:
output_file = f"feedback_training_{agent_name}_{datetime.now().strftime('%Y%m%d')}.jsonl"
output_path = self.storage_dir / output_file
training_data = []
# Add high-rated responses
for file_path in (self.storage_dir / "ratings").glob("*.json"):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
if data.get('agent_name') == agent_name and data.get('rating', 0) >= min_rating:
training_data.append({
'messages': [
{'role': 'user', 'content': data['user_message']},
{'role': 'assistant', 'content': data['agent_response']}
],
'metadata': {
'rating': data['rating'],
'source': 'user_rating'
}
})
# Add corrections
if include_corrections:
for file_path in (self.storage_dir / "corrections").glob("*.json"):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
if data.get('agent_name') == agent_name:
training_data.append({
'messages': [
{'role': 'user', 'content': data['user_message']},
{'role': 'assistant', 'content': data['corrected_response']}
],
'metadata': {
'source': 'user_correction',
'reason': data.get('correction_reason')
}
})
# Write to JSONL
with open(output_path, 'w', encoding='utf-8') as f:
for item in training_data:
f.write(json.dumps(item, ensure_ascii=False) + '\n')
return str(output_path)
# Global instance
_feedback_collector = None
def get_feedback_collector() -> FeedbackCollector:
"""Get global feedback collector instance"""
global _feedback_collector
if _feedback_collector is None:
_feedback_collector = FeedbackCollector()
return _feedback_collector
|