File size: 8,412 Bytes
eeb0f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
Data Collector for Fine-tuning
Collects and stores conversation data for training custom models
"""

import json
import os
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Any, Optional


class ConversationDataCollector:
    """Collects conversation data for fine-tuning"""
    
    def __init__(self, data_dir: str = "fine_tuning/data"):
        self.data_dir = Path(data_dir)
        self.data_dir.mkdir(parents=True, exist_ok=True)
        
        # Create subdirectories for each agent
        self.agent_dirs = {
            'nutrition': self.data_dir / 'nutrition',
            'exercise': self.data_dir / 'exercise',
            'symptom': self.data_dir / 'symptom',
            'mental_health': self.data_dir / 'mental_health',
            'general_health': self.data_dir / 'general_health'
        }
        
        for agent_dir in self.agent_dirs.values():
            agent_dir.mkdir(exist_ok=True)
    
    def log_conversation(
        self,
        agent_name: str,
        user_message: str,
        agent_response: str,
        user_data: Optional[Dict[str, Any]] = None,
        metadata: Optional[Dict[str, Any]] = None
    ) -> None:
        """
        Log a conversation turn for fine-tuning
        
        Args:
            agent_name: Name of the agent (nutrition, exercise, etc.)
            user_message: User's message
            agent_response: Agent's response
            user_data: User profile data (age, gender, etc.)
            metadata: Additional metadata (rating, feedback, etc.)
        """
        conversation_entry = {
            'timestamp': datetime.now().isoformat(),
            'agent': agent_name,
            'user_message': user_message,
            'agent_response': agent_response,
            'user_data': user_data or {},
            'metadata': metadata or {}
        }
        
        # Save to agent-specific file
        agent_key = agent_name.replace('_agent', '')
        if agent_key in self.agent_dirs:
            filename = f"conversations_{datetime.now().strftime('%Y%m%d')}.jsonl"
            filepath = self.agent_dirs[agent_key] / filename
            
            with open(filepath, 'a', encoding='utf-8') as f:
                f.write(json.dumps(conversation_entry, ensure_ascii=False) + '\n')
    
    def log_multi_turn_conversation(
        self,
        agent_name: str,
        conversation_history: List[tuple],
        user_data: Optional[Dict[str, Any]] = None,
        metadata: Optional[Dict[str, Any]] = None
    ) -> None:
        """
        Log a multi-turn conversation
        
        Args:
            agent_name: Name of the agent
            conversation_history: List of (user_msg, agent_msg) tuples
            user_data: User profile data
            metadata: Additional metadata
        """
        multi_turn_entry = {
            'timestamp': datetime.now().isoformat(),
            'agent': agent_name,
            'conversation': [
                {'user': user_msg, 'agent': agent_msg}
                for user_msg, agent_msg in conversation_history
            ],
            'user_data': user_data or {},
            'metadata': metadata or {}
        }
        
        agent_key = agent_name.replace('_agent', '')
        if agent_key in self.agent_dirs:
            filename = f"multi_turn_{datetime.now().strftime('%Y%m%d')}.jsonl"
            filepath = self.agent_dirs[agent_key] / filename
            
            with open(filepath, 'a', encoding='utf-8') as f:
                f.write(json.dumps(multi_turn_entry, ensure_ascii=False) + '\n')
    
    def get_conversation_count(self, agent_name: Optional[str] = None) -> Dict[str, int]:
        """
        Get count of logged conversations
        
        Args:
            agent_name: Optional agent name to filter by
            
        Returns:
            Dict with agent names and conversation counts
        """
        counts = {}
        
        agents_to_check = [agent_name.replace('_agent', '')] if agent_name else self.agent_dirs.keys()
        
        for agent_key in agents_to_check:
            if agent_key in self.agent_dirs:
                agent_dir = self.agent_dirs[agent_key]
                count = 0
                
                for file in agent_dir.glob('conversations_*.jsonl'):
                    with open(file, 'r', encoding='utf-8') as f:
                        count += sum(1 for _ in f)
                
                counts[agent_key] = count
        
        return counts
    
    def export_for_openai_finetuning(
        self,
        agent_name: str,
        output_file: Optional[str] = None,
        min_quality_rating: Optional[float] = None
    ) -> str:
        """
        Export conversations in OpenAI fine-tuning format
        
        Args:
            agent_name: Agent to export data for
            output_file: Output file path
            min_quality_rating: Minimum quality rating to include
            
        Returns:
            Path to exported file
        """
        agent_key = agent_name.replace('_agent', '')
        if agent_key not in self.agent_dirs:
            raise ValueError(f"Unknown agent: {agent_name}")
        
        if output_file is None:
            output_file = self.data_dir / f"{agent_key}_finetuning_{datetime.now().strftime('%Y%m%d')}.jsonl"
        
        agent_dir = self.agent_dirs[agent_key]
        exported_count = 0
        
        with open(output_file, 'w', encoding='utf-8') as out_f:
            # Process single-turn conversations
            for file in agent_dir.glob('conversations_*.jsonl'):
                with open(file, 'r', encoding='utf-8') as in_f:
                    for line in in_f:
                        entry = json.loads(line)
                        
                        # Filter by quality rating if specified
                        if min_quality_rating:
                            rating = entry.get('metadata', {}).get('rating')
                            if rating is None or rating < min_quality_rating:
                                continue
                        
                        # Convert to OpenAI format
                        openai_format = {
                            "messages": [
                                {"role": "system", "content": f"You are a {agent_key} specialist."},
                                {"role": "user", "content": entry['user_message']},
                                {"role": "assistant", "content": entry['agent_response']}
                            ]
                        }
                        
                        out_f.write(json.dumps(openai_format, ensure_ascii=False) + '\n')
                        exported_count += 1
            
            # Process multi-turn conversations
            for file in agent_dir.glob('multi_turn_*.jsonl'):
                with open(file, 'r', encoding='utf-8') as in_f:
                    for line in in_f:
                        entry = json.loads(line)
                        
                        # Filter by quality rating if specified
                        if min_quality_rating:
                            rating = entry.get('metadata', {}).get('rating')
                            if rating is None or rating < min_quality_rating:
                                continue
                        
                        # Convert to OpenAI format
                        messages = [{"role": "system", "content": f"You are a {agent_key} specialist."}]
                        
                        for turn in entry['conversation']:
                            messages.append({"role": "user", "content": turn['user']})
                            messages.append({"role": "assistant", "content": turn['agent']})
                        
                        openai_format = {"messages": messages}
                        out_f.write(json.dumps(openai_format, ensure_ascii=False) + '\n')
                        exported_count += 1
        
        print(f"✅ Exported {exported_count} conversations to {output_file}")
        return str(output_file)


# Global instance
_collector = None

def get_data_collector() -> ConversationDataCollector:
    """Get global data collector instance"""
    global _collector
    if _collector is None:
        _collector = ConversationDataCollector()
    return _collector